| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ ℕ ) |
| 2 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → 𝐴 ⊆ ℝ ) |
| 3 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 4 |
|
unss |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ℕ ⊆ ℝ ) ↔ ( 𝐴 ∪ ℕ ) ⊆ ℝ ) |
| 5 |
2 3 4
|
sylanblc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ⊆ ℝ ) |
| 6 |
|
nnenom |
⊢ ℕ ≈ ω |
| 7 |
|
domentr |
⊢ ( ( 𝐴 ≼ ℕ ∧ ℕ ≈ ω ) → 𝐴 ≼ ω ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝐴 ≼ ℕ → 𝐴 ≼ ω ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → 𝐴 ≼ ω ) |
| 10 |
|
nnct |
⊢ ℕ ≼ ω |
| 11 |
|
unctb |
⊢ ( ( 𝐴 ≼ ω ∧ ℕ ≼ ω ) → ( 𝐴 ∪ ℕ ) ≼ ω ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ≼ ω ) |
| 13 |
6
|
ensymi |
⊢ ω ≈ ℕ |
| 14 |
|
domentr |
⊢ ( ( ( 𝐴 ∪ ℕ ) ≼ ω ∧ ω ≈ ℕ ) → ( 𝐴 ∪ ℕ ) ≼ ℕ ) |
| 15 |
12 13 14
|
sylancl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ≼ ℕ ) |
| 16 |
|
reex |
⊢ ℝ ∈ V |
| 17 |
16
|
ssex |
⊢ ( ( 𝐴 ∪ ℕ ) ⊆ ℝ → ( 𝐴 ∪ ℕ ) ∈ V ) |
| 18 |
5 17
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ∈ V ) |
| 19 |
|
ssun2 |
⊢ ℕ ⊆ ( 𝐴 ∪ ℕ ) |
| 20 |
|
ssdomg |
⊢ ( ( 𝐴 ∪ ℕ ) ∈ V → ( ℕ ⊆ ( 𝐴 ∪ ℕ ) → ℕ ≼ ( 𝐴 ∪ ℕ ) ) ) |
| 21 |
18 19 20
|
mpisyl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ℕ ≼ ( 𝐴 ∪ ℕ ) ) |
| 22 |
|
sbth |
⊢ ( ( ( 𝐴 ∪ ℕ ) ≼ ℕ ∧ ℕ ≼ ( 𝐴 ∪ ℕ ) ) → ( 𝐴 ∪ ℕ ) ≈ ℕ ) |
| 23 |
15 21 22
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( 𝐴 ∪ ℕ ) ≈ ℕ ) |
| 24 |
|
ovolctb |
⊢ ( ( ( 𝐴 ∪ ℕ ) ⊆ ℝ ∧ ( 𝐴 ∪ ℕ ) ≈ ℕ ) → ( vol* ‘ ( 𝐴 ∪ ℕ ) ) = 0 ) |
| 25 |
5 23 24
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( vol* ‘ ( 𝐴 ∪ ℕ ) ) = 0 ) |
| 26 |
|
ovolssnul |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ ℕ ) ∧ ( 𝐴 ∪ ℕ ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∪ ℕ ) ) = 0 ) → ( vol* ‘ 𝐴 ) = 0 ) |
| 27 |
1 5 25 26
|
mp3an2i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( vol* ‘ 𝐴 ) = 0 ) |