Step |
Hyp |
Ref |
Expression |
1 |
|
mbfresfi.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
mbfresfi.2 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
3 |
|
mbfresfi.3 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) |
4 |
|
mbfresfi.4 |
⊢ ( 𝜑 → ∪ 𝑆 = 𝐴 ) |
5 |
2
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
6 |
4 5
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
7 |
|
fex |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ V ) → 𝐹 ∈ V ) |
8 |
7
|
ex |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐴 ∈ V → 𝐹 ∈ V ) ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ V → 𝐹 ∈ V ) ) |
10 |
6 9
|
jcai |
⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐹 ∈ V ) ) |
11 |
|
feq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑓 : 𝑎 ⟶ ℂ ↔ 𝑓 : 𝐴 ⟶ ℂ ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
13 |
|
eqeq2 |
⊢ ( 𝑎 = 𝐴 → ( ∪ 𝑆 = 𝑎 ↔ ∪ 𝑆 = 𝐴 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) ↔ ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) ) ) |
15 |
14
|
imbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝜑 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ↔ ( 𝜑 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) ) ) |
17 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴 ⟶ ℂ ↔ 𝐹 : 𝐴 ⟶ ℂ ) ) |
18 |
|
reseq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ↾ 𝑠 ) = ( 𝐹 ↾ 𝑠 ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ) |
21 |
17 20
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ) ) |
22 |
21
|
anbi1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) ) ) |
23 |
|
eleq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn ) ) |
24 |
22 23
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝜑 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) ↔ ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) ) ) |
26 |
|
rzal |
⊢ ( 𝑟 = ∅ → ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) |
27 |
26
|
biantrud |
⊢ ( 𝑟 = ∅ → ( 𝑓 : 𝑎 ⟶ ℂ ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
28 |
27
|
bicomd |
⊢ ( 𝑟 = ∅ → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ 𝑓 : 𝑎 ⟶ ℂ ) ) |
29 |
|
unieq |
⊢ ( 𝑟 = ∅ → ∪ 𝑟 = ∪ ∅ ) |
30 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
31 |
29 30
|
eqtrdi |
⊢ ( 𝑟 = ∅ → ∪ 𝑟 = ∅ ) |
32 |
31
|
eqeq1d |
⊢ ( 𝑟 = ∅ → ( ∪ 𝑟 = 𝑎 ↔ ∅ = 𝑎 ) ) |
33 |
28 32
|
anbi12d |
⊢ ( 𝑟 = ∅ → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) ) ) |
34 |
33
|
imbi1d |
⊢ ( 𝑟 = ∅ → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
35 |
34
|
2albidv |
⊢ ( 𝑟 = ∅ → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓 ∀ 𝑎 ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
36 |
|
raleq |
⊢ ( 𝑟 = 𝑡 → ( ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) |
37 |
36
|
anbi2d |
⊢ ( 𝑟 = 𝑡 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
38 |
|
unieq |
⊢ ( 𝑟 = 𝑡 → ∪ 𝑟 = ∪ 𝑡 ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑟 = 𝑡 → ( ∪ 𝑟 = 𝑎 ↔ ∪ 𝑡 = 𝑎 ) ) |
40 |
37 39
|
anbi12d |
⊢ ( 𝑟 = 𝑡 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) ) ) |
41 |
40
|
imbi1d |
⊢ ( 𝑟 = 𝑡 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
42 |
41
|
2albidv |
⊢ ( 𝑟 = 𝑡 → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
43 |
|
simpl |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → 𝑓 = 𝑔 ) |
44 |
|
simpr |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → 𝑎 = 𝑏 ) |
45 |
43 44
|
feq12d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( 𝑓 : 𝑎 ⟶ ℂ ↔ 𝑔 : 𝑏 ⟶ ℂ ) ) |
46 |
|
reseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ↾ 𝑠 ) = ( 𝑔 ↾ 𝑠 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( 𝑓 ↾ 𝑠 ) = ( 𝑔 ↾ 𝑠 ) ) |
48 |
47
|
eleq1d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ) |
49 |
48
|
ralbidv |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ) |
50 |
45 49
|
anbi12d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ) ) |
51 |
|
eqeq2 |
⊢ ( 𝑎 = 𝑏 → ( ∪ 𝑡 = 𝑎 ↔ ∪ 𝑡 = 𝑏 ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ∪ 𝑡 = 𝑎 ↔ ∪ 𝑡 = 𝑏 ) ) |
53 |
50 52
|
anbi12d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ) ) |
54 |
|
eleq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( 𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn ) ) |
56 |
53 55
|
imbi12d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ) ) |
57 |
56
|
cbval2vw |
⊢ ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ) |
58 |
42 57
|
bitrdi |
⊢ ( 𝑟 = 𝑡 → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ) ) |
59 |
|
raleq |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) |
60 |
59
|
anbi2d |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
61 |
|
unieq |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ∪ 𝑟 = ∪ ( 𝑡 ∪ { ℎ } ) ) |
62 |
61
|
eqeq1d |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ∪ 𝑟 = 𝑎 ↔ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) |
63 |
60 62
|
anbi12d |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) ) |
64 |
63
|
imbi1d |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
65 |
64
|
2albidv |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
66 |
|
raleq |
⊢ ( 𝑟 = 𝑆 → ( ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) |
67 |
66
|
anbi2d |
⊢ ( 𝑟 = 𝑆 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
68 |
|
unieq |
⊢ ( 𝑟 = 𝑆 → ∪ 𝑟 = ∪ 𝑆 ) |
69 |
68
|
eqeq1d |
⊢ ( 𝑟 = 𝑆 → ( ∪ 𝑟 = 𝑎 ↔ ∪ 𝑆 = 𝑎 ) ) |
70 |
67 69
|
anbi12d |
⊢ ( 𝑟 = 𝑆 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) ) ) |
71 |
70
|
imbi1d |
⊢ ( 𝑟 = 𝑆 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
72 |
71
|
2albidv |
⊢ ( 𝑟 = 𝑆 → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
73 |
|
frel |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → Rel 𝑓 ) |
74 |
73
|
adantr |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → Rel 𝑓 ) |
75 |
|
fdm |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → dom 𝑓 = 𝑎 ) |
76 |
|
eqcom |
⊢ ( ∅ = 𝑎 ↔ 𝑎 = ∅ ) |
77 |
76
|
biimpi |
⊢ ( ∅ = 𝑎 → 𝑎 = ∅ ) |
78 |
75 77
|
sylan9eq |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → dom 𝑓 = ∅ ) |
79 |
|
reldm0 |
⊢ ( Rel 𝑓 → ( 𝑓 = ∅ ↔ dom 𝑓 = ∅ ) ) |
80 |
79
|
biimpar |
⊢ ( ( Rel 𝑓 ∧ dom 𝑓 = ∅ ) → 𝑓 = ∅ ) |
81 |
|
mbf0 |
⊢ ∅ ∈ MblFn |
82 |
80 81
|
eqeltrdi |
⊢ ( ( Rel 𝑓 ∧ dom 𝑓 = ∅ ) → 𝑓 ∈ MblFn ) |
83 |
74 78 82
|
syl2anc |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) |
84 |
83
|
gen2 |
⊢ ∀ 𝑓 ∀ 𝑎 ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) |
85 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
86 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
87 |
85 86
|
mpan |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
88 |
87
|
adantr |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
89 |
88
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
90 |
|
recncf |
⊢ ℜ ∈ ( ℂ –cn→ ℝ ) |
91 |
90
|
elexi |
⊢ ℜ ∈ V |
92 |
|
vex |
⊢ 𝑓 ∈ V |
93 |
91 92
|
coex |
⊢ ( ℜ ∘ 𝑓 ) ∈ V |
94 |
93
|
resex |
⊢ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ V |
95 |
|
vuniex |
⊢ ∪ 𝑡 ∈ V |
96 |
|
eqcom |
⊢ ( 𝑏 = ∪ 𝑡 ↔ ∪ 𝑡 = 𝑏 ) |
97 |
96
|
biimpi |
⊢ ( 𝑏 = ∪ 𝑡 → ∪ 𝑡 = 𝑏 ) |
98 |
97
|
adantl |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ∪ 𝑡 = 𝑏 ) |
99 |
98
|
biantrud |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ) ) |
100 |
|
eqid |
⊢ ℂ = ℂ |
101 |
|
feq123 |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ∧ ℂ = ℂ ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) ) |
102 |
100 101
|
mp3an3 |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) ) |
103 |
|
reseq1 |
⊢ ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( 𝑔 ↾ 𝑠 ) = ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ) |
104 |
103
|
eleq1d |
⊢ ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
105 |
104
|
adantr |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
106 |
105
|
ralbidv |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
107 |
102 106
|
anbi12d |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) ) |
108 |
99 107
|
bitr3d |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) ) |
109 |
|
eleq1 |
⊢ ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
110 |
109
|
adantr |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
111 |
108 110
|
imbi12d |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ↔ ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) ) |
112 |
111
|
spc2gv |
⊢ ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ V ∧ ∪ 𝑡 ∈ V ) → ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) ) |
113 |
94 95 112
|
mp2an |
⊢ ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
114 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
115 |
|
fss |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ ) |
116 |
85 114 115
|
mp2an |
⊢ ℜ : ℂ ⟶ ℂ |
117 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℂ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ) |
118 |
116 117
|
mpan |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ) |
119 |
|
ssun1 |
⊢ 𝑡 ⊆ ( 𝑡 ∪ { ℎ } ) |
120 |
119
|
unissi |
⊢ ∪ 𝑡 ⊆ ∪ ( 𝑡 ∪ { ℎ } ) |
121 |
|
id |
⊢ ( ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 → ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) |
122 |
120 121
|
sseqtrid |
⊢ ( ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 → ∪ 𝑡 ⊆ 𝑎 ) |
123 |
|
fssres |
⊢ ( ( ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ∧ ∪ 𝑡 ⊆ 𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
124 |
118 122 123
|
syl2an |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
125 |
124
|
adantlr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
126 |
|
elssuni |
⊢ ( 𝑟 ∈ 𝑡 → 𝑟 ⊆ ∪ 𝑡 ) |
127 |
126
|
resabs1d |
⊢ ( 𝑟 ∈ 𝑡 → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ( ℜ ∘ 𝑓 ) ↾ 𝑟 ) ) |
128 |
|
resco |
⊢ ( ( ℜ ∘ 𝑓 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) |
129 |
127 128
|
eqtrdi |
⊢ ( 𝑟 ∈ 𝑡 → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ) |
130 |
129
|
adantl |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ) |
131 |
|
elun1 |
⊢ ( 𝑟 ∈ 𝑡 → 𝑟 ∈ ( 𝑡 ∪ { ℎ } ) ) |
132 |
|
reseq2 |
⊢ ( 𝑠 = 𝑟 → ( 𝑓 ↾ 𝑠 ) = ( 𝑓 ↾ 𝑟 ) ) |
133 |
132
|
eleq1d |
⊢ ( 𝑠 = 𝑟 → ( ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ( 𝑓 ↾ 𝑟 ) ∈ MblFn ) ) |
134 |
133
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ∧ 𝑟 ∈ ( 𝑡 ∪ { ℎ } ) ) → ( 𝑓 ↾ 𝑟 ) ∈ MblFn ) |
135 |
131 134
|
sylan2 |
⊢ ( ( ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ∧ 𝑟 ∈ 𝑡 ) → ( 𝑓 ↾ 𝑟 ) ∈ MblFn ) |
136 |
135
|
adantll |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( 𝑓 ↾ 𝑟 ) ∈ MblFn ) |
137 |
|
fresin |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓 ↾ 𝑟 ) : ( 𝑎 ∩ 𝑟 ) ⟶ ℂ ) |
138 |
|
ismbfcn |
⊢ ( ( 𝑓 ↾ 𝑟 ) : ( 𝑎 ∩ 𝑟 ) ⟶ ℂ → ( ( 𝑓 ↾ 𝑟 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) ) |
139 |
137 138
|
syl |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓 ↾ 𝑟 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) ) |
140 |
139
|
biimpd |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓 ↾ 𝑟 ) ∈ MblFn → ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) ) |
141 |
140
|
ad2antrr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( 𝑓 ↾ 𝑟 ) ∈ MblFn → ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) ) |
142 |
136 141
|
mpd |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) |
143 |
142
|
simpld |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) |
144 |
130 143
|
eqeltrd |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ) |
145 |
144
|
ralrimiva |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ∀ 𝑟 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ) |
146 |
|
reseq2 |
⊢ ( 𝑟 = 𝑠 → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ) |
147 |
146
|
eleq1d |
⊢ ( 𝑟 = 𝑠 → ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
148 |
147
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
149 |
145 148
|
sylib |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
150 |
149
|
adantr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
151 |
|
pm2.27 |
⊢ ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
152 |
125 150 151
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
153 |
113 152
|
mpan9 |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) |
154 |
|
vsnid |
⊢ ℎ ∈ { ℎ } |
155 |
|
elun2 |
⊢ ( ℎ ∈ { ℎ } → ℎ ∈ ( 𝑡 ∪ { ℎ } ) ) |
156 |
|
reseq2 |
⊢ ( 𝑠 = ℎ → ( 𝑓 ↾ 𝑠 ) = ( 𝑓 ↾ ℎ ) ) |
157 |
156
|
eleq1d |
⊢ ( 𝑠 = ℎ → ( ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ( 𝑓 ↾ ℎ ) ∈ MblFn ) ) |
158 |
157
|
rspcv |
⊢ ( ℎ ∈ ( 𝑡 ∪ { ℎ } ) → ( ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn → ( 𝑓 ↾ ℎ ) ∈ MblFn ) ) |
159 |
154 155 158
|
mp2b |
⊢ ( ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn → ( 𝑓 ↾ ℎ ) ∈ MblFn ) |
160 |
|
resco |
⊢ ( ( ℜ ∘ 𝑓 ) ↾ ℎ ) = ( ℜ ∘ ( 𝑓 ↾ ℎ ) ) |
161 |
|
fresin |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓 ↾ ℎ ) : ( 𝑎 ∩ ℎ ) ⟶ ℂ ) |
162 |
|
ismbfcn |
⊢ ( ( 𝑓 ↾ ℎ ) : ( 𝑎 ∩ ℎ ) ⟶ ℂ → ( ( 𝑓 ↾ ℎ ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ) ) ) |
163 |
161 162
|
syl |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓 ↾ ℎ ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ) ) ) |
164 |
163
|
simprbda |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ↾ ℎ ) ∈ MblFn ) → ( ℜ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ) |
165 |
160 164
|
eqeltrid |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ↾ ℎ ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
166 |
159 165
|
sylan2 |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
167 |
166
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ( ℜ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
168 |
|
uniun |
⊢ ∪ ( 𝑡 ∪ { ℎ } ) = ( ∪ 𝑡 ∪ ∪ { ℎ } ) |
169 |
|
vex |
⊢ ℎ ∈ V |
170 |
169
|
unisn |
⊢ ∪ { ℎ } = ℎ |
171 |
170
|
uneq2i |
⊢ ( ∪ 𝑡 ∪ ∪ { ℎ } ) = ( ∪ 𝑡 ∪ ℎ ) |
172 |
168 171
|
eqtri |
⊢ ∪ ( 𝑡 ∪ { ℎ } ) = ( ∪ 𝑡 ∪ ℎ ) |
173 |
172 121
|
eqtr3id |
⊢ ( ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 → ( ∪ 𝑡 ∪ ℎ ) = 𝑎 ) |
174 |
173
|
ad2antll |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ∪ 𝑡 ∪ ℎ ) = 𝑎 ) |
175 |
89 153 167 174
|
mbfres2 |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ℜ ∘ 𝑓 ) ∈ MblFn ) |
176 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
177 |
|
fco |
⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
178 |
176 177
|
mpan |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
179 |
178
|
adantr |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
180 |
179
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
181 |
|
imcncf |
⊢ ℑ ∈ ( ℂ –cn→ ℝ ) |
182 |
181
|
elexi |
⊢ ℑ ∈ V |
183 |
182 92
|
coex |
⊢ ( ℑ ∘ 𝑓 ) ∈ V |
184 |
183
|
resex |
⊢ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ V |
185 |
97
|
adantl |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ∪ 𝑡 = 𝑏 ) |
186 |
185
|
biantrud |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ) ) |
187 |
|
feq123 |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ∧ ℂ = ℂ ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) ) |
188 |
100 187
|
mp3an3 |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) ) |
189 |
|
reseq1 |
⊢ ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( 𝑔 ↾ 𝑠 ) = ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ) |
190 |
189
|
eleq1d |
⊢ ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
191 |
190
|
adantr |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
192 |
191
|
ralbidv |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
193 |
188 192
|
anbi12d |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) ) |
194 |
186 193
|
bitr3d |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) ) |
195 |
|
eleq1 |
⊢ ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
196 |
195
|
adantr |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
197 |
194 196
|
imbi12d |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ↔ ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) ) |
198 |
197
|
spc2gv |
⊢ ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ V ∧ ∪ 𝑡 ∈ V ) → ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) ) |
199 |
184 95 198
|
mp2an |
⊢ ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
200 |
|
fss |
⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℑ : ℂ ⟶ ℂ ) |
201 |
176 114 200
|
mp2an |
⊢ ℑ : ℂ ⟶ ℂ |
202 |
|
fco |
⊢ ( ( ℑ : ℂ ⟶ ℂ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ) |
203 |
201 202
|
mpan |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ) |
204 |
|
fssres |
⊢ ( ( ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ∧ ∪ 𝑡 ⊆ 𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
205 |
203 122 204
|
syl2an |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
206 |
205
|
adantlr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
207 |
126
|
resabs1d |
⊢ ( 𝑟 ∈ 𝑡 → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ( ℑ ∘ 𝑓 ) ↾ 𝑟 ) ) |
208 |
|
resco |
⊢ ( ( ℑ ∘ 𝑓 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) |
209 |
207 208
|
eqtrdi |
⊢ ( 𝑟 ∈ 𝑡 → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ) |
210 |
209
|
adantl |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ) |
211 |
142
|
simprd |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) |
212 |
210 211
|
eqeltrd |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ) |
213 |
212
|
ralrimiva |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ∀ 𝑟 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ) |
214 |
|
reseq2 |
⊢ ( 𝑟 = 𝑠 → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ) |
215 |
214
|
eleq1d |
⊢ ( 𝑟 = 𝑠 → ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
216 |
215
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
217 |
213 216
|
sylib |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
218 |
217
|
adantr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
219 |
|
pm2.27 |
⊢ ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
220 |
206 218 219
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
221 |
199 220
|
mpan9 |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) |
222 |
|
resco |
⊢ ( ( ℑ ∘ 𝑓 ) ↾ ℎ ) = ( ℑ ∘ ( 𝑓 ↾ ℎ ) ) |
223 |
163
|
simplbda |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ↾ ℎ ) ∈ MblFn ) → ( ℑ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ) |
224 |
222 223
|
eqeltrid |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ↾ ℎ ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
225 |
159 224
|
sylan2 |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
226 |
225
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ( ℑ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
227 |
180 221 226 174
|
mbfres2 |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ℑ ∘ 𝑓 ) ∈ MblFn ) |
228 |
|
ismbfcn |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) ) |
229 |
228
|
adantr |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) ) |
230 |
229
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) ) |
231 |
175 227 230
|
mpbir2and |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → 𝑓 ∈ MblFn ) |
232 |
231
|
ex |
⊢ ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
233 |
232
|
alrimivv |
⊢ ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
234 |
233
|
a1i |
⊢ ( 𝑡 ∈ Fin → ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
235 |
35 58 65 72 84 234
|
findcard2 |
⊢ ( 𝑆 ∈ Fin → ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
236 |
|
2sp |
⊢ ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
237 |
2 235 236
|
3syl |
⊢ ( 𝜑 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
238 |
16 25 237
|
vtocl2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 ∈ V ) → ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) ) |
239 |
10 238
|
mpcom |
⊢ ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) |
240 |
4 239
|
mpan2d |
⊢ ( 𝜑 → ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) → 𝐹 ∈ MblFn ) ) |
241 |
1 3 240
|
mp2and |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |