Metamath Proof Explorer


Theorem mbfresfi

Description: Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018)

Ref Expression
Hypotheses mbfresfi.1 ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
mbfresfi.2 ( 𝜑𝑆 ∈ Fin )
mbfresfi.3 ( 𝜑 → ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn )
mbfresfi.4 ( 𝜑 𝑆 = 𝐴 )
Assertion mbfresfi ( 𝜑𝐹 ∈ MblFn )

Proof

Step Hyp Ref Expression
1 mbfresfi.1 ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
2 mbfresfi.2 ( 𝜑𝑆 ∈ Fin )
3 mbfresfi.3 ( 𝜑 → ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn )
4 mbfresfi.4 ( 𝜑 𝑆 = 𝐴 )
5 2 uniexd ( 𝜑 𝑆 ∈ V )
6 4 5 eqeltrrd ( 𝜑𝐴 ∈ V )
7 fex ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ V ) → 𝐹 ∈ V )
8 7 ex ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐴 ∈ V → 𝐹 ∈ V ) )
9 1 8 syl ( 𝜑 → ( 𝐴 ∈ V → 𝐹 ∈ V ) )
10 6 9 jcai ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐹 ∈ V ) )
11 feq2 ( 𝑎 = 𝐴 → ( 𝑓 : 𝑎 ⟶ ℂ ↔ 𝑓 : 𝐴 ⟶ ℂ ) )
12 11 anbi1d ( 𝑎 = 𝐴 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ) )
13 eqeq2 ( 𝑎 = 𝐴 → ( 𝑆 = 𝑎 𝑆 = 𝐴 ) )
14 12 13 anbi12d ( 𝑎 = 𝐴 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) ↔ ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) ) )
15 14 imbi1d ( 𝑎 = 𝐴 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) )
16 15 imbi2d ( 𝑎 = 𝐴 → ( ( 𝜑 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ↔ ( 𝜑 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) ) )
17 feq1 ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴 ⟶ ℂ ↔ 𝐹 : 𝐴 ⟶ ℂ ) )
18 reseq1 ( 𝑓 = 𝐹 → ( 𝑓𝑠 ) = ( 𝐹𝑠 ) )
19 18 eleq1d ( 𝑓 = 𝐹 → ( ( 𝑓𝑠 ) ∈ MblFn ↔ ( 𝐹𝑠 ) ∈ MblFn ) )
20 19 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ↔ ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn ) )
21 17 20 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn ) ) )
22 21 anbi1d ( 𝑓 = 𝐹 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) ) )
23 eleq1 ( 𝑓 = 𝐹 → ( 𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn ) )
24 22 23 imbi12d ( 𝑓 = 𝐹 → ( ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) )
25 24 imbi2d ( 𝑓 = 𝐹 → ( ( 𝜑 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) ↔ ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) ) )
26 rzal ( 𝑟 = ∅ → ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn )
27 26 biantrud ( 𝑟 = ∅ → ( 𝑓 : 𝑎 ⟶ ℂ ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ) )
28 27 bicomd ( 𝑟 = ∅ → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ↔ 𝑓 : 𝑎 ⟶ ℂ ) )
29 unieq ( 𝑟 = ∅ → 𝑟 = ∅ )
30 uni0 ∅ = ∅
31 29 30 eqtrdi ( 𝑟 = ∅ → 𝑟 = ∅ )
32 31 eqeq1d ( 𝑟 = ∅ → ( 𝑟 = 𝑎 ↔ ∅ = 𝑎 ) )
33 28 32 anbi12d ( 𝑟 = ∅ → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) ) )
34 33 imbi1d ( 𝑟 = ∅ → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
35 34 2albidv ( 𝑟 = ∅ → ( ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓𝑎 ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
36 raleq ( 𝑟 = 𝑡 → ( ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ↔ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) )
37 36 anbi2d ( 𝑟 = 𝑡 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) ) )
38 unieq ( 𝑟 = 𝑡 𝑟 = 𝑡 )
39 38 eqeq1d ( 𝑟 = 𝑡 → ( 𝑟 = 𝑎 𝑡 = 𝑎 ) )
40 37 39 anbi12d ( 𝑟 = 𝑡 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑎 ) ) )
41 40 imbi1d ( 𝑟 = 𝑡 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
42 41 2albidv ( 𝑟 = 𝑡 → ( ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
43 simpl ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → 𝑓 = 𝑔 )
44 simpr ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → 𝑎 = 𝑏 )
45 43 44 feq12d ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( 𝑓 : 𝑎 ⟶ ℂ ↔ 𝑔 : 𝑏 ⟶ ℂ ) )
46 reseq1 ( 𝑓 = 𝑔 → ( 𝑓𝑠 ) = ( 𝑔𝑠 ) )
47 46 adantr ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( 𝑓𝑠 ) = ( 𝑔𝑠 ) )
48 47 eleq1d ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( ( 𝑓𝑠 ) ∈ MblFn ↔ ( 𝑔𝑠 ) ∈ MblFn ) )
49 48 ralbidv ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ↔ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) )
50 45 49 anbi12d ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) ↔ ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ) )
51 eqeq2 ( 𝑎 = 𝑏 → ( 𝑡 = 𝑎 𝑡 = 𝑏 ) )
52 51 adantl ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( 𝑡 = 𝑎 𝑡 = 𝑏 ) )
53 50 52 anbi12d ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑎 ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) ) )
54 eleq1 ( 𝑓 = 𝑔 → ( 𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn ) )
55 54 adantr ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( 𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn ) )
56 53 55 imbi12d ( ( 𝑓 = 𝑔𝑎 = 𝑏 ) → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ) )
57 56 cbval2vw ( ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) )
58 42 57 bitrdi ( 𝑟 = 𝑡 → ( ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ) )
59 raleq ( 𝑟 = ( 𝑡 ∪ { } ) → ( ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) )
60 59 anbi2d ( 𝑟 = ( 𝑡 ∪ { } ) → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ) )
61 unieq ( 𝑟 = ( 𝑡 ∪ { } ) → 𝑟 = ( 𝑡 ∪ { } ) )
62 61 eqeq1d ( 𝑟 = ( 𝑡 ∪ { } ) → ( 𝑟 = 𝑎 ( 𝑡 ∪ { } ) = 𝑎 ) )
63 60 62 anbi12d ( 𝑟 = ( 𝑡 ∪ { } ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) )
64 63 imbi1d ( 𝑟 = ( 𝑡 ∪ { } ) → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
65 64 2albidv ( 𝑟 = ( 𝑡 ∪ { } ) → ( ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
66 raleq ( 𝑟 = 𝑆 → ( ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ↔ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) )
67 66 anbi2d ( 𝑟 = 𝑆 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ) )
68 unieq ( 𝑟 = 𝑆 𝑟 = 𝑆 )
69 68 eqeq1d ( 𝑟 = 𝑆 → ( 𝑟 = 𝑎 𝑆 = 𝑎 ) )
70 67 69 anbi12d ( 𝑟 = 𝑆 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) ) )
71 70 imbi1d ( 𝑟 = 𝑆 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
72 71 2albidv ( 𝑟 = 𝑆 → ( ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑟 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
73 frel ( 𝑓 : 𝑎 ⟶ ℂ → Rel 𝑓 )
74 73 adantr ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → Rel 𝑓 )
75 fdm ( 𝑓 : 𝑎 ⟶ ℂ → dom 𝑓 = 𝑎 )
76 eqcom ( ∅ = 𝑎𝑎 = ∅ )
77 76 biimpi ( ∅ = 𝑎𝑎 = ∅ )
78 75 77 sylan9eq ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → dom 𝑓 = ∅ )
79 reldm0 ( Rel 𝑓 → ( 𝑓 = ∅ ↔ dom 𝑓 = ∅ ) )
80 79 biimpar ( ( Rel 𝑓 ∧ dom 𝑓 = ∅ ) → 𝑓 = ∅ )
81 mbf0 ∅ ∈ MblFn
82 80 81 eqeltrdi ( ( Rel 𝑓 ∧ dom 𝑓 = ∅ ) → 𝑓 ∈ MblFn )
83 74 78 82 syl2anc ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn )
84 83 gen2 𝑓𝑎 ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn )
85 ref ℜ : ℂ ⟶ ℝ
86 fco ( ( ℜ : ℂ ⟶ ℝ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ )
87 85 86 mpan ( 𝑓 : 𝑎 ⟶ ℂ → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ )
88 87 adantr ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ )
89 88 ad2antrl ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ )
90 recncf ℜ ∈ ( ℂ –cn→ ℝ )
91 90 elexi ℜ ∈ V
92 vex 𝑓 ∈ V
93 91 92 coex ( ℜ ∘ 𝑓 ) ∈ V
94 93 resex ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ V
95 vuniex 𝑡 ∈ V
96 eqcom ( 𝑏 = 𝑡 𝑡 = 𝑏 )
97 96 biimpi ( 𝑏 = 𝑡 𝑡 = 𝑏 )
98 97 adantl ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → 𝑡 = 𝑏 )
99 98 biantrud ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) ) )
100 eqid ℂ = ℂ
101 feq123 ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ) )
102 100 101 mp3an3 ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ) )
103 reseq1 ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) → ( 𝑔𝑠 ) = ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) )
104 103 eleq1d ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) → ( ( 𝑔𝑠 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) )
105 104 adantr ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( 𝑔𝑠 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) )
106 105 ralbidv ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ↔ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) )
107 102 106 anbi12d ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) )
108 99 107 bitr3d ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) )
109 eleq1 ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
110 109 adantr ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
111 108 110 imbi12d ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ↔ ( ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) ) )
112 111 spc2gv ( ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ V ∧ 𝑡 ∈ V ) → ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) ) )
113 94 95 112 mp2an ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
114 ax-resscn ℝ ⊆ ℂ
115 fss ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ )
116 85 114 115 mp2an ℜ : ℂ ⟶ ℂ
117 fco ( ( ℜ : ℂ ⟶ ℂ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ )
118 116 117 mpan ( 𝑓 : 𝑎 ⟶ ℂ → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ )
119 ssun1 𝑡 ⊆ ( 𝑡 ∪ { } )
120 119 unissi 𝑡 ( 𝑡 ∪ { } )
121 id ( ( 𝑡 ∪ { } ) = 𝑎 ( 𝑡 ∪ { } ) = 𝑎 )
122 120 121 sseqtrid ( ( 𝑡 ∪ { } ) = 𝑎 𝑡𝑎 )
123 fssres ( ( ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ∧ 𝑡𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ )
124 118 122 123 syl2an ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ )
125 124 adantlr ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ )
126 elssuni ( 𝑟𝑡𝑟 𝑡 )
127 126 resabs1d ( 𝑟𝑡 → ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) = ( ( ℜ ∘ 𝑓 ) ↾ 𝑟 ) )
128 resco ( ( ℜ ∘ 𝑓 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓𝑟 ) )
129 127 128 eqtrdi ( 𝑟𝑡 → ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓𝑟 ) ) )
130 129 adantl ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓𝑟 ) ) )
131 elun1 ( 𝑟𝑡𝑟 ∈ ( 𝑡 ∪ { } ) )
132 reseq2 ( 𝑠 = 𝑟 → ( 𝑓𝑠 ) = ( 𝑓𝑟 ) )
133 132 eleq1d ( 𝑠 = 𝑟 → ( ( 𝑓𝑠 ) ∈ MblFn ↔ ( 𝑓𝑟 ) ∈ MblFn ) )
134 133 rspccva ( ( ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ∧ 𝑟 ∈ ( 𝑡 ∪ { } ) ) → ( 𝑓𝑟 ) ∈ MblFn )
135 131 134 sylan2 ( ( ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ∧ 𝑟𝑡 ) → ( 𝑓𝑟 ) ∈ MblFn )
136 135 adantll ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( 𝑓𝑟 ) ∈ MblFn )
137 fresin ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓𝑟 ) : ( 𝑎𝑟 ) ⟶ ℂ )
138 ismbfcn ( ( 𝑓𝑟 ) : ( 𝑎𝑟 ) ⟶ ℂ → ( ( 𝑓𝑟 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ) ) )
139 137 138 syl ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓𝑟 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ) ) )
140 139 biimpd ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓𝑟 ) ∈ MblFn → ( ( ℜ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ) ) )
141 140 ad2antrr ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( ( 𝑓𝑟 ) ∈ MblFn → ( ( ℜ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ) ) )
142 136 141 mpd ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( ( ℜ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓𝑟 ) ) ∈ MblFn ) )
143 142 simpld ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( ℜ ∘ ( 𝑓𝑟 ) ) ∈ MblFn )
144 130 143 eqeltrd ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) ∈ MblFn )
145 144 ralrimiva ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ∀ 𝑟𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) ∈ MblFn )
146 reseq2 ( 𝑟 = 𝑠 → ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) = ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) )
147 146 eleq1d ( 𝑟 = 𝑠 → ( ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) )
148 147 cbvralvw ( ∀ 𝑟𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn )
149 145 148 sylib ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn )
150 149 adantr ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn )
151 pm2.27 ( ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
152 125 150 151 syl2anc ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → ( ( ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
153 113 152 mpan9 ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( ( ℜ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn )
154 vsnid ∈ { }
155 elun2 ( ∈ { } → ∈ ( 𝑡 ∪ { } ) )
156 reseq2 ( 𝑠 = → ( 𝑓𝑠 ) = ( 𝑓 ) )
157 156 eleq1d ( 𝑠 = → ( ( 𝑓𝑠 ) ∈ MblFn ↔ ( 𝑓 ) ∈ MblFn ) )
158 157 rspcv ( ∈ ( 𝑡 ∪ { } ) → ( ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn → ( 𝑓 ) ∈ MblFn ) )
159 154 155 158 mp2b ( ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn → ( 𝑓 ) ∈ MblFn )
160 resco ( ( ℜ ∘ 𝑓 ) ↾ ) = ( ℜ ∘ ( 𝑓 ) )
161 fresin ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓 ) : ( 𝑎 ) ⟶ ℂ )
162 ismbfcn ( ( 𝑓 ) : ( 𝑎 ) ⟶ ℂ → ( ( 𝑓 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ) ) ∈ MblFn ) ) )
163 161 162 syl ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ) ) ∈ MblFn ) ) )
164 163 simprbda ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ) ∈ MblFn ) → ( ℜ ∘ ( 𝑓 ) ) ∈ MblFn )
165 160 164 eqeltrid ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ) ∈ MblFn )
166 159 165 sylan2 ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ) ∈ MblFn )
167 166 ad2antrl ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( ( ℜ ∘ 𝑓 ) ↾ ) ∈ MblFn )
168 uniun ( 𝑡 ∪ { } ) = ( 𝑡 { } )
169 vex ∈ V
170 169 unisn { } =
171 170 uneq2i ( 𝑡 { } ) = ( 𝑡 )
172 168 171 eqtri ( 𝑡 ∪ { } ) = ( 𝑡 )
173 172 121 eqtr3id ( ( 𝑡 ∪ { } ) = 𝑎 → ( 𝑡 ) = 𝑎 )
174 173 ad2antll ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( 𝑡 ) = 𝑎 )
175 89 153 167 174 mbfres2 ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( ℜ ∘ 𝑓 ) ∈ MblFn )
176 imf ℑ : ℂ ⟶ ℝ
177 fco ( ( ℑ : ℂ ⟶ ℝ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ )
178 176 177 mpan ( 𝑓 : 𝑎 ⟶ ℂ → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ )
179 178 adantr ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ )
180 179 ad2antrl ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ )
181 imcncf ℑ ∈ ( ℂ –cn→ ℝ )
182 181 elexi ℑ ∈ V
183 182 92 coex ( ℑ ∘ 𝑓 ) ∈ V
184 183 resex ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ V
185 97 adantl ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → 𝑡 = 𝑏 )
186 185 biantrud ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) ) )
187 feq123 ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ) )
188 100 187 mp3an3 ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ) )
189 reseq1 ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) → ( 𝑔𝑠 ) = ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) )
190 189 eleq1d ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) → ( ( 𝑔𝑠 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) )
191 190 adantr ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( 𝑔𝑠 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) )
192 191 ralbidv ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ↔ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) )
193 188 192 anbi12d ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) )
194 186 193 bitr3d ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) )
195 eleq1 ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
196 195 adantr ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
197 194 196 imbi12d ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∧ 𝑏 = 𝑡 ) → ( ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ↔ ( ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) ) )
198 197 spc2gv ( ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ V ∧ 𝑡 ∈ V ) → ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) ) )
199 184 95 198 mp2an ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
200 fss ( ( ℑ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℑ : ℂ ⟶ ℂ )
201 176 114 200 mp2an ℑ : ℂ ⟶ ℂ
202 fco ( ( ℑ : ℂ ⟶ ℂ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ )
203 201 202 mpan ( 𝑓 : 𝑎 ⟶ ℂ → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ )
204 fssres ( ( ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ∧ 𝑡𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ )
205 203 122 204 syl2an ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ )
206 205 adantlr ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ )
207 126 resabs1d ( 𝑟𝑡 → ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) = ( ( ℑ ∘ 𝑓 ) ↾ 𝑟 ) )
208 resco ( ( ℑ ∘ 𝑓 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓𝑟 ) )
209 207 208 eqtrdi ( 𝑟𝑡 → ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓𝑟 ) ) )
210 209 adantl ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓𝑟 ) ) )
211 142 simprd ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( ℑ ∘ ( 𝑓𝑟 ) ) ∈ MblFn )
212 210 211 eqeltrd ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑟𝑡 ) → ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) ∈ MblFn )
213 212 ralrimiva ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ∀ 𝑟𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) ∈ MblFn )
214 reseq2 ( 𝑟 = 𝑠 → ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) = ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) )
215 214 eleq1d ( 𝑟 = 𝑠 → ( ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) )
216 215 cbvralvw ( ∀ 𝑟𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn )
217 213 216 sylib ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn )
218 217 adantr ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn )
219 pm2.27 ( ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
220 206 218 219 syl2anc ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → ( ( ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) : 𝑡 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn ) )
221 199 220 mpan9 ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( ( ℑ ∘ 𝑓 ) ↾ 𝑡 ) ∈ MblFn )
222 resco ( ( ℑ ∘ 𝑓 ) ↾ ) = ( ℑ ∘ ( 𝑓 ) )
223 163 simplbda ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ) ∈ MblFn ) → ( ℑ ∘ ( 𝑓 ) ) ∈ MblFn )
224 222 223 eqeltrid ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ) ∈ MblFn )
225 159 224 sylan2 ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ) ∈ MblFn )
226 225 ad2antrl ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( ( ℑ ∘ 𝑓 ) ↾ ) ∈ MblFn )
227 180 221 226 174 mbfres2 ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( ℑ ∘ 𝑓 ) ∈ MblFn )
228 ismbfcn ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) )
229 228 adantr ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) )
230 229 ad2antrl ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) )
231 175 227 230 mpbir2and ( ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) ) → 𝑓 ∈ MblFn )
232 231 ex ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → 𝑓 ∈ MblFn ) )
233 232 alrimivv ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → 𝑓 ∈ MblFn ) )
234 233 a1i ( 𝑡 ∈ Fin → ( ∀ 𝑔𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠𝑡 ( 𝑔𝑠 ) ∈ MblFn ) ∧ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { } ) ( 𝑓𝑠 ) ∈ MblFn ) ∧ ( 𝑡 ∪ { } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) )
235 35 58 65 72 84 234 findcard2 ( 𝑆 ∈ Fin → ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) )
236 2sp ( ∀ 𝑓𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) )
237 2 235 236 3syl ( 𝜑 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝑓𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) )
238 16 25 237 vtocl2g ( ( 𝐴 ∈ V ∧ 𝐹 ∈ V ) → ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) )
239 10 238 mpcom ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn ) ∧ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) )
240 4 239 mpan2d ( 𝜑 → ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠𝑆 ( 𝐹𝑠 ) ∈ MblFn ) → 𝐹 ∈ MblFn ) )
241 1 3 240 mp2and ( 𝜑𝐹 ∈ MblFn )