| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfresfi.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 2 |
|
mbfresfi.2 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 3 |
|
mbfresfi.3 |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) |
| 4 |
|
mbfresfi.4 |
⊢ ( 𝜑 → ∪ 𝑆 = 𝐴 ) |
| 5 |
2
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
| 6 |
4 5
|
eqeltrrd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 7 |
|
fex |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ∈ V ) → 𝐹 ∈ V ) |
| 8 |
7
|
ex |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐴 ∈ V → 𝐹 ∈ V ) ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ V → 𝐹 ∈ V ) ) |
| 10 |
6 9
|
jcai |
⊢ ( 𝜑 → ( 𝐴 ∈ V ∧ 𝐹 ∈ V ) ) |
| 11 |
|
feq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑓 : 𝑎 ⟶ ℂ ↔ 𝑓 : 𝐴 ⟶ ℂ ) ) |
| 12 |
11
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 13 |
|
eqeq2 |
⊢ ( 𝑎 = 𝐴 → ( ∪ 𝑆 = 𝑎 ↔ ∪ 𝑆 = 𝐴 ) ) |
| 14 |
12 13
|
anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) ↔ ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) ) ) |
| 15 |
14
|
imbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝜑 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ↔ ( 𝜑 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) ) ) |
| 17 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴 ⟶ ℂ ↔ 𝐹 : 𝐴 ⟶ ℂ ) ) |
| 18 |
|
reseq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ↾ 𝑠 ) = ( 𝐹 ↾ 𝑠 ) ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ) |
| 20 |
19
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ) |
| 21 |
17 20
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 22 |
21
|
anbi1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) ↔ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) ) ) |
| 23 |
|
eleq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn ) ) |
| 24 |
22 23
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝜑 → ( ( ( 𝑓 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝑓 ∈ MblFn ) ) ↔ ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) ) ) |
| 26 |
|
rzal |
⊢ ( 𝑟 = ∅ → ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) |
| 27 |
26
|
biantrud |
⊢ ( 𝑟 = ∅ → ( 𝑓 : 𝑎 ⟶ ℂ ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 28 |
27
|
bicomd |
⊢ ( 𝑟 = ∅ → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ 𝑓 : 𝑎 ⟶ ℂ ) ) |
| 29 |
|
unieq |
⊢ ( 𝑟 = ∅ → ∪ 𝑟 = ∪ ∅ ) |
| 30 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 31 |
29 30
|
eqtrdi |
⊢ ( 𝑟 = ∅ → ∪ 𝑟 = ∅ ) |
| 32 |
31
|
eqeq1d |
⊢ ( 𝑟 = ∅ → ( ∪ 𝑟 = 𝑎 ↔ ∅ = 𝑎 ) ) |
| 33 |
28 32
|
anbi12d |
⊢ ( 𝑟 = ∅ → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) ) ) |
| 34 |
33
|
imbi1d |
⊢ ( 𝑟 = ∅ → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 35 |
34
|
2albidv |
⊢ ( 𝑟 = ∅ → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓 ∀ 𝑎 ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 36 |
|
raleq |
⊢ ( 𝑟 = 𝑡 → ( ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) |
| 37 |
36
|
anbi2d |
⊢ ( 𝑟 = 𝑡 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 38 |
|
unieq |
⊢ ( 𝑟 = 𝑡 → ∪ 𝑟 = ∪ 𝑡 ) |
| 39 |
38
|
eqeq1d |
⊢ ( 𝑟 = 𝑡 → ( ∪ 𝑟 = 𝑎 ↔ ∪ 𝑡 = 𝑎 ) ) |
| 40 |
37 39
|
anbi12d |
⊢ ( 𝑟 = 𝑡 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) ) ) |
| 41 |
40
|
imbi1d |
⊢ ( 𝑟 = 𝑡 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 42 |
41
|
2albidv |
⊢ ( 𝑟 = 𝑡 → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 43 |
|
simpl |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → 𝑓 = 𝑔 ) |
| 44 |
|
simpr |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → 𝑎 = 𝑏 ) |
| 45 |
43 44
|
feq12d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( 𝑓 : 𝑎 ⟶ ℂ ↔ 𝑔 : 𝑏 ⟶ ℂ ) ) |
| 46 |
|
reseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ↾ 𝑠 ) = ( 𝑔 ↾ 𝑠 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( 𝑓 ↾ 𝑠 ) = ( 𝑔 ↾ 𝑠 ) ) |
| 48 |
47
|
eleq1d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ) |
| 49 |
48
|
ralbidv |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ) |
| 50 |
45 49
|
anbi12d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 51 |
|
eqeq2 |
⊢ ( 𝑎 = 𝑏 → ( ∪ 𝑡 = 𝑎 ↔ ∪ 𝑡 = 𝑏 ) ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ∪ 𝑡 = 𝑎 ↔ ∪ 𝑡 = 𝑏 ) ) |
| 53 |
50 52
|
anbi12d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ) ) |
| 54 |
|
eleq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn ) ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( 𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn ) ) |
| 56 |
53 55
|
imbi12d |
⊢ ( ( 𝑓 = 𝑔 ∧ 𝑎 = 𝑏 ) → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ) ) |
| 57 |
56
|
cbval2vw |
⊢ ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ) |
| 58 |
42 57
|
bitrdi |
⊢ ( 𝑟 = 𝑡 → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ) ) |
| 59 |
|
raleq |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) |
| 60 |
59
|
anbi2d |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 61 |
|
unieq |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ∪ 𝑟 = ∪ ( 𝑡 ∪ { ℎ } ) ) |
| 62 |
61
|
eqeq1d |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ∪ 𝑟 = 𝑎 ↔ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) |
| 63 |
60 62
|
anbi12d |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) ) |
| 64 |
63
|
imbi1d |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 65 |
64
|
2albidv |
⊢ ( 𝑟 = ( 𝑡 ∪ { ℎ } ) → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 66 |
|
raleq |
⊢ ( 𝑟 = 𝑆 → ( ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) |
| 67 |
66
|
anbi2d |
⊢ ( 𝑟 = 𝑆 → ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ↔ ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 68 |
|
unieq |
⊢ ( 𝑟 = 𝑆 → ∪ 𝑟 = ∪ 𝑆 ) |
| 69 |
68
|
eqeq1d |
⊢ ( 𝑟 = 𝑆 → ( ∪ 𝑟 = 𝑎 ↔ ∪ 𝑆 = 𝑎 ) ) |
| 70 |
67 69
|
anbi12d |
⊢ ( 𝑟 = 𝑆 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) ↔ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) ) ) |
| 71 |
70
|
imbi1d |
⊢ ( 𝑟 = 𝑆 → ( ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 72 |
71
|
2albidv |
⊢ ( 𝑟 = 𝑆 → ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑟 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑟 = 𝑎 ) → 𝑓 ∈ MblFn ) ↔ ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 73 |
|
frel |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → Rel 𝑓 ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → Rel 𝑓 ) |
| 75 |
|
fdm |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → dom 𝑓 = 𝑎 ) |
| 76 |
|
eqcom |
⊢ ( ∅ = 𝑎 ↔ 𝑎 = ∅ ) |
| 77 |
76
|
biimpi |
⊢ ( ∅ = 𝑎 → 𝑎 = ∅ ) |
| 78 |
75 77
|
sylan9eq |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → dom 𝑓 = ∅ ) |
| 79 |
|
reldm0 |
⊢ ( Rel 𝑓 → ( 𝑓 = ∅ ↔ dom 𝑓 = ∅ ) ) |
| 80 |
79
|
biimpar |
⊢ ( ( Rel 𝑓 ∧ dom 𝑓 = ∅ ) → 𝑓 = ∅ ) |
| 81 |
|
mbf0 |
⊢ ∅ ∈ MblFn |
| 82 |
80 81
|
eqeltrdi |
⊢ ( ( Rel 𝑓 ∧ dom 𝑓 = ∅ ) → 𝑓 ∈ MblFn ) |
| 83 |
74 78 82
|
syl2anc |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) |
| 84 |
83
|
gen2 |
⊢ ∀ 𝑓 ∀ 𝑎 ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∅ = 𝑎 ) → 𝑓 ∈ MblFn ) |
| 85 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
| 86 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
| 87 |
85 86
|
mpan |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
| 89 |
88
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
| 90 |
|
recncf |
⊢ ℜ ∈ ( ℂ –cn→ ℝ ) |
| 91 |
90
|
elexi |
⊢ ℜ ∈ V |
| 92 |
|
vex |
⊢ 𝑓 ∈ V |
| 93 |
91 92
|
coex |
⊢ ( ℜ ∘ 𝑓 ) ∈ V |
| 94 |
93
|
resex |
⊢ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ V |
| 95 |
|
vuniex |
⊢ ∪ 𝑡 ∈ V |
| 96 |
|
eqcom |
⊢ ( 𝑏 = ∪ 𝑡 ↔ ∪ 𝑡 = 𝑏 ) |
| 97 |
96
|
biimpi |
⊢ ( 𝑏 = ∪ 𝑡 → ∪ 𝑡 = 𝑏 ) |
| 98 |
97
|
adantl |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ∪ 𝑡 = 𝑏 ) |
| 99 |
98
|
biantrud |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ) ) |
| 100 |
|
eqid |
⊢ ℂ = ℂ |
| 101 |
|
feq123 |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ∧ ℂ = ℂ ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) ) |
| 102 |
100 101
|
mp3an3 |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) ) |
| 103 |
|
reseq1 |
⊢ ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( 𝑔 ↾ 𝑠 ) = ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ) |
| 104 |
103
|
eleq1d |
⊢ ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
| 106 |
105
|
ralbidv |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
| 107 |
102 106
|
anbi12d |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 108 |
99 107
|
bitr3d |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 109 |
|
eleq1 |
⊢ ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 111 |
108 110
|
imbi12d |
⊢ ( ( 𝑔 = ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ↔ ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) ) |
| 112 |
111
|
spc2gv |
⊢ ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ V ∧ ∪ 𝑡 ∈ V ) → ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) ) |
| 113 |
94 95 112
|
mp2an |
⊢ ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 114 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 115 |
|
fss |
⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ ) |
| 116 |
85 114 115
|
mp2an |
⊢ ℜ : ℂ ⟶ ℂ |
| 117 |
|
fco |
⊢ ( ( ℜ : ℂ ⟶ ℂ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ) |
| 118 |
116 117
|
mpan |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ) |
| 119 |
|
ssun1 |
⊢ 𝑡 ⊆ ( 𝑡 ∪ { ℎ } ) |
| 120 |
119
|
unissi |
⊢ ∪ 𝑡 ⊆ ∪ ( 𝑡 ∪ { ℎ } ) |
| 121 |
|
id |
⊢ ( ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 → ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) |
| 122 |
120 121
|
sseqtrid |
⊢ ( ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 → ∪ 𝑡 ⊆ 𝑎 ) |
| 123 |
|
fssres |
⊢ ( ( ( ℜ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ∧ ∪ 𝑡 ⊆ 𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
| 124 |
118 122 123
|
syl2an |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
| 125 |
124
|
adantlr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
| 126 |
|
elssuni |
⊢ ( 𝑟 ∈ 𝑡 → 𝑟 ⊆ ∪ 𝑡 ) |
| 127 |
126
|
resabs1d |
⊢ ( 𝑟 ∈ 𝑡 → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ( ℜ ∘ 𝑓 ) ↾ 𝑟 ) ) |
| 128 |
|
resco |
⊢ ( ( ℜ ∘ 𝑓 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) |
| 129 |
127 128
|
eqtrdi |
⊢ ( 𝑟 ∈ 𝑡 → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ) |
| 130 |
129
|
adantl |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ) |
| 131 |
|
elun1 |
⊢ ( 𝑟 ∈ 𝑡 → 𝑟 ∈ ( 𝑡 ∪ { ℎ } ) ) |
| 132 |
|
reseq2 |
⊢ ( 𝑠 = 𝑟 → ( 𝑓 ↾ 𝑠 ) = ( 𝑓 ↾ 𝑟 ) ) |
| 133 |
132
|
eleq1d |
⊢ ( 𝑠 = 𝑟 → ( ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ( 𝑓 ↾ 𝑟 ) ∈ MblFn ) ) |
| 134 |
133
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ∧ 𝑟 ∈ ( 𝑡 ∪ { ℎ } ) ) → ( 𝑓 ↾ 𝑟 ) ∈ MblFn ) |
| 135 |
131 134
|
sylan2 |
⊢ ( ( ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ∧ 𝑟 ∈ 𝑡 ) → ( 𝑓 ↾ 𝑟 ) ∈ MblFn ) |
| 136 |
135
|
adantll |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( 𝑓 ↾ 𝑟 ) ∈ MblFn ) |
| 137 |
|
fresin |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓 ↾ 𝑟 ) : ( 𝑎 ∩ 𝑟 ) ⟶ ℂ ) |
| 138 |
|
ismbfcn |
⊢ ( ( 𝑓 ↾ 𝑟 ) : ( 𝑎 ∩ 𝑟 ) ⟶ ℂ → ( ( 𝑓 ↾ 𝑟 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) ) |
| 139 |
137 138
|
syl |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓 ↾ 𝑟 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) ) |
| 140 |
139
|
biimpd |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓 ↾ 𝑟 ) ∈ MblFn → ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) ) |
| 141 |
140
|
ad2antrr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( 𝑓 ↾ 𝑟 ) ∈ MblFn → ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) ) |
| 142 |
136 141
|
mpd |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) ) |
| 143 |
142
|
simpld |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ℜ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) |
| 144 |
130 143
|
eqeltrd |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ) |
| 145 |
144
|
ralrimiva |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ∀ 𝑟 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ) |
| 146 |
|
reseq2 |
⊢ ( 𝑟 = 𝑠 → ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ) |
| 147 |
146
|
eleq1d |
⊢ ( 𝑟 = 𝑠 → ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
| 148 |
147
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
| 149 |
145 148
|
sylib |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
| 150 |
149
|
adantr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
| 151 |
|
pm2.27 |
⊢ ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 152 |
125 150 151
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 153 |
113 152
|
mpan9 |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ( ℜ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) |
| 154 |
|
vsnid |
⊢ ℎ ∈ { ℎ } |
| 155 |
|
elun2 |
⊢ ( ℎ ∈ { ℎ } → ℎ ∈ ( 𝑡 ∪ { ℎ } ) ) |
| 156 |
|
reseq2 |
⊢ ( 𝑠 = ℎ → ( 𝑓 ↾ 𝑠 ) = ( 𝑓 ↾ ℎ ) ) |
| 157 |
156
|
eleq1d |
⊢ ( 𝑠 = ℎ → ( ( 𝑓 ↾ 𝑠 ) ∈ MblFn ↔ ( 𝑓 ↾ ℎ ) ∈ MblFn ) ) |
| 158 |
157
|
rspcv |
⊢ ( ℎ ∈ ( 𝑡 ∪ { ℎ } ) → ( ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn → ( 𝑓 ↾ ℎ ) ∈ MblFn ) ) |
| 159 |
154 155 158
|
mp2b |
⊢ ( ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn → ( 𝑓 ↾ ℎ ) ∈ MblFn ) |
| 160 |
|
resco |
⊢ ( ( ℜ ∘ 𝑓 ) ↾ ℎ ) = ( ℜ ∘ ( 𝑓 ↾ ℎ ) ) |
| 161 |
|
fresin |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓 ↾ ℎ ) : ( 𝑎 ∩ ℎ ) ⟶ ℂ ) |
| 162 |
|
ismbfcn |
⊢ ( ( 𝑓 ↾ ℎ ) : ( 𝑎 ∩ ℎ ) ⟶ ℂ → ( ( 𝑓 ↾ ℎ ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ) ) ) |
| 163 |
161 162
|
syl |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ( 𝑓 ↾ ℎ ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ) ) ) |
| 164 |
163
|
simprbda |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ↾ ℎ ) ∈ MblFn ) → ( ℜ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ) |
| 165 |
160 164
|
eqeltrid |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ↾ ℎ ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
| 166 |
159 165
|
sylan2 |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( ( ℜ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
| 167 |
166
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ( ℜ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
| 168 |
|
uniun |
⊢ ∪ ( 𝑡 ∪ { ℎ } ) = ( ∪ 𝑡 ∪ ∪ { ℎ } ) |
| 169 |
|
unisnv |
⊢ ∪ { ℎ } = ℎ |
| 170 |
169
|
uneq2i |
⊢ ( ∪ 𝑡 ∪ ∪ { ℎ } ) = ( ∪ 𝑡 ∪ ℎ ) |
| 171 |
168 170
|
eqtri |
⊢ ∪ ( 𝑡 ∪ { ℎ } ) = ( ∪ 𝑡 ∪ ℎ ) |
| 172 |
171 121
|
eqtr3id |
⊢ ( ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 → ( ∪ 𝑡 ∪ ℎ ) = 𝑎 ) |
| 173 |
172
|
ad2antll |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ∪ 𝑡 ∪ ℎ ) = 𝑎 ) |
| 174 |
89 153 167 173
|
mbfres2 |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ℜ ∘ 𝑓 ) ∈ MblFn ) |
| 175 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
| 176 |
|
fco |
⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
| 177 |
175 176
|
mpan |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
| 178 |
177
|
adantr |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
| 179 |
178
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℝ ) |
| 180 |
|
imcncf |
⊢ ℑ ∈ ( ℂ –cn→ ℝ ) |
| 181 |
180
|
elexi |
⊢ ℑ ∈ V |
| 182 |
181 92
|
coex |
⊢ ( ℑ ∘ 𝑓 ) ∈ V |
| 183 |
182
|
resex |
⊢ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ V |
| 184 |
97
|
adantl |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ∪ 𝑡 = 𝑏 ) |
| 185 |
184
|
biantrud |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ↔ ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ) ) |
| 186 |
|
feq123 |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ∧ ℂ = ℂ ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) ) |
| 187 |
100 186
|
mp3an3 |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( 𝑔 : 𝑏 ⟶ ℂ ↔ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) ) |
| 188 |
|
reseq1 |
⊢ ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( 𝑔 ↾ 𝑠 ) = ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ) |
| 189 |
188
|
eleq1d |
⊢ ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
| 190 |
189
|
adantr |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
| 191 |
190
|
ralbidv |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
| 192 |
187 191
|
anbi12d |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 193 |
185 192
|
bitr3d |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) ) |
| 194 |
|
eleq1 |
⊢ ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 195 |
194
|
adantr |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( 𝑔 ∈ MblFn ↔ ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 196 |
193 195
|
imbi12d |
⊢ ( ( 𝑔 = ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∧ 𝑏 = ∪ 𝑡 ) → ( ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ↔ ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) ) |
| 197 |
196
|
spc2gv |
⊢ ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ V ∧ ∪ 𝑡 ∈ V ) → ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) ) |
| 198 |
183 95 197
|
mp2an |
⊢ ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 199 |
|
fss |
⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℑ : ℂ ⟶ ℂ ) |
| 200 |
175 114 199
|
mp2an |
⊢ ℑ : ℂ ⟶ ℂ |
| 201 |
|
fco |
⊢ ( ( ℑ : ℂ ⟶ ℂ ∧ 𝑓 : 𝑎 ⟶ ℂ ) → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ) |
| 202 |
200 201
|
mpan |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ) |
| 203 |
|
fssres |
⊢ ( ( ( ℑ ∘ 𝑓 ) : 𝑎 ⟶ ℂ ∧ ∪ 𝑡 ⊆ 𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
| 204 |
202 122 203
|
syl2an |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
| 205 |
204
|
adantlr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ) |
| 206 |
126
|
resabs1d |
⊢ ( 𝑟 ∈ 𝑡 → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ( ℑ ∘ 𝑓 ) ↾ 𝑟 ) ) |
| 207 |
|
resco |
⊢ ( ( ℑ ∘ 𝑓 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) |
| 208 |
206 207
|
eqtrdi |
⊢ ( 𝑟 ∈ 𝑡 → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ) |
| 209 |
208
|
adantl |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ) |
| 210 |
142
|
simprd |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ℑ ∘ ( 𝑓 ↾ 𝑟 ) ) ∈ MblFn ) |
| 211 |
209 210
|
eqeltrd |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ 𝑟 ∈ 𝑡 ) → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ) |
| 212 |
211
|
ralrimiva |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ∀ 𝑟 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ) |
| 213 |
|
reseq2 |
⊢ ( 𝑟 = 𝑠 → ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) = ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ) |
| 214 |
213
|
eleq1d |
⊢ ( 𝑟 = 𝑠 → ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) ) |
| 215 |
214
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑟 ) ∈ MblFn ↔ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
| 216 |
212 215
|
sylib |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
| 217 |
216
|
adantr |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) |
| 218 |
|
pm2.27 |
⊢ ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 219 |
205 217 218
|
syl2anc |
⊢ ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → ( ( ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) : ∪ 𝑡 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) ) |
| 220 |
198 219
|
mpan9 |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ( ℑ ∘ 𝑓 ) ↾ ∪ 𝑡 ) ∈ MblFn ) |
| 221 |
|
resco |
⊢ ( ( ℑ ∘ 𝑓 ) ↾ ℎ ) = ( ℑ ∘ ( 𝑓 ↾ ℎ ) ) |
| 222 |
163
|
simplbda |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ↾ ℎ ) ∈ MblFn ) → ( ℑ ∘ ( 𝑓 ↾ ℎ ) ) ∈ MblFn ) |
| 223 |
221 222
|
eqeltrid |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ( 𝑓 ↾ ℎ ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
| 224 |
159 223
|
sylan2 |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( ( ℑ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
| 225 |
224
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ( ℑ ∘ 𝑓 ) ↾ ℎ ) ∈ MblFn ) |
| 226 |
179 220 225 173
|
mbfres2 |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( ℑ ∘ 𝑓 ) ∈ MblFn ) |
| 227 |
|
ismbfcn |
⊢ ( 𝑓 : 𝑎 ⟶ ℂ → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) ) |
| 228 |
227
|
adantr |
⊢ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) ) |
| 229 |
228
|
ad2antrl |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → ( 𝑓 ∈ MblFn ↔ ( ( ℜ ∘ 𝑓 ) ∈ MblFn ∧ ( ℑ ∘ 𝑓 ) ∈ MblFn ) ) ) |
| 230 |
174 226 229
|
mpbir2and |
⊢ ( ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) ∧ ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) ) → 𝑓 ∈ MblFn ) |
| 231 |
230
|
ex |
⊢ ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
| 232 |
231
|
alrimivv |
⊢ ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
| 233 |
232
|
a1i |
⊢ ( 𝑡 ∈ Fin → ( ∀ 𝑔 ∀ 𝑏 ( ( ( 𝑔 : 𝑏 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑡 ( 𝑔 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑡 = 𝑏 ) → 𝑔 ∈ MblFn ) → ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ ( 𝑡 ∪ { ℎ } ) ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ ( 𝑡 ∪ { ℎ } ) = 𝑎 ) → 𝑓 ∈ MblFn ) ) ) |
| 234 |
35 58 65 72 84 233
|
findcard2 |
⊢ ( 𝑆 ∈ Fin → ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
| 235 |
|
2sp |
⊢ ( ∀ 𝑓 ∀ 𝑎 ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
| 236 |
2 234 235
|
3syl |
⊢ ( 𝜑 → ( ( ( 𝑓 : 𝑎 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑓 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝑎 ) → 𝑓 ∈ MblFn ) ) |
| 237 |
16 25 236
|
vtocl2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐹 ∈ V ) → ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) ) |
| 238 |
10 237
|
mpcom |
⊢ ( 𝜑 → ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) ∧ ∪ 𝑆 = 𝐴 ) → 𝐹 ∈ MblFn ) ) |
| 239 |
4 238
|
mpan2d |
⊢ ( 𝜑 → ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑠 ∈ 𝑆 ( 𝐹 ↾ 𝑠 ) ∈ MblFn ) → 𝐹 ∈ MblFn ) ) |
| 240 |
1 3 239
|
mp2and |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |