Metamath Proof Explorer


Theorem mbfresfi

Description: Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018)

Ref Expression
Hypotheses mbfresfi.1 φ F : A
mbfresfi.2 φ S Fin
mbfresfi.3 φ s S F s MblFn
mbfresfi.4 φ S = A
Assertion mbfresfi φ F MblFn

Proof

Step Hyp Ref Expression
1 mbfresfi.1 φ F : A
2 mbfresfi.2 φ S Fin
3 mbfresfi.3 φ s S F s MblFn
4 mbfresfi.4 φ S = A
5 2 uniexd φ S V
6 4 5 eqeltrrd φ A V
7 fex F : A A V F V
8 7 ex F : A A V F V
9 1 8 syl φ A V F V
10 6 9 jcai φ A V F V
11 feq2 a = A f : a f : A
12 11 anbi1d a = A f : a s S f s MblFn f : A s S f s MblFn
13 eqeq2 a = A S = a S = A
14 12 13 anbi12d a = A f : a s S f s MblFn S = a f : A s S f s MblFn S = A
15 14 imbi1d a = A f : a s S f s MblFn S = a f MblFn f : A s S f s MblFn S = A f MblFn
16 15 imbi2d a = A φ f : a s S f s MblFn S = a f MblFn φ f : A s S f s MblFn S = A f MblFn
17 feq1 f = F f : A F : A
18 reseq1 f = F f s = F s
19 18 eleq1d f = F f s MblFn F s MblFn
20 19 ralbidv f = F s S f s MblFn s S F s MblFn
21 17 20 anbi12d f = F f : A s S f s MblFn F : A s S F s MblFn
22 21 anbi1d f = F f : A s S f s MblFn S = A F : A s S F s MblFn S = A
23 eleq1 f = F f MblFn F MblFn
24 22 23 imbi12d f = F f : A s S f s MblFn S = A f MblFn F : A s S F s MblFn S = A F MblFn
25 24 imbi2d f = F φ f : A s S f s MblFn S = A f MblFn φ F : A s S F s MblFn S = A F MblFn
26 rzal r = s r f s MblFn
27 26 biantrud r = f : a f : a s r f s MblFn
28 27 bicomd r = f : a s r f s MblFn f : a
29 unieq r = r =
30 uni0 =
31 29 30 eqtrdi r = r =
32 31 eqeq1d r = r = a = a
33 28 32 anbi12d r = f : a s r f s MblFn r = a f : a = a
34 33 imbi1d r = f : a s r f s MblFn r = a f MblFn f : a = a f MblFn
35 34 2albidv r = f a f : a s r f s MblFn r = a f MblFn f a f : a = a f MblFn
36 raleq r = t s r f s MblFn s t f s MblFn
37 36 anbi2d r = t f : a s r f s MblFn f : a s t f s MblFn
38 unieq r = t r = t
39 38 eqeq1d r = t r = a t = a
40 37 39 anbi12d r = t f : a s r f s MblFn r = a f : a s t f s MblFn t = a
41 40 imbi1d r = t f : a s r f s MblFn r = a f MblFn f : a s t f s MblFn t = a f MblFn
42 41 2albidv r = t f a f : a s r f s MblFn r = a f MblFn f a f : a s t f s MblFn t = a f MblFn
43 simpl f = g a = b f = g
44 simpr f = g a = b a = b
45 43 44 feq12d f = g a = b f : a g : b
46 reseq1 f = g f s = g s
47 46 adantr f = g a = b f s = g s
48 47 eleq1d f = g a = b f s MblFn g s MblFn
49 48 ralbidv f = g a = b s t f s MblFn s t g s MblFn
50 45 49 anbi12d f = g a = b f : a s t f s MblFn g : b s t g s MblFn
51 eqeq2 a = b t = a t = b
52 51 adantl f = g a = b t = a t = b
53 50 52 anbi12d f = g a = b f : a s t f s MblFn t = a g : b s t g s MblFn t = b
54 eleq1 f = g f MblFn g MblFn
55 54 adantr f = g a = b f MblFn g MblFn
56 53 55 imbi12d f = g a = b f : a s t f s MblFn t = a f MblFn g : b s t g s MblFn t = b g MblFn
57 56 cbval2vw f a f : a s t f s MblFn t = a f MblFn g b g : b s t g s MblFn t = b g MblFn
58 42 57 bitrdi r = t f a f : a s r f s MblFn r = a f MblFn g b g : b s t g s MblFn t = b g MblFn
59 raleq r = t h s r f s MblFn s t h f s MblFn
60 59 anbi2d r = t h f : a s r f s MblFn f : a s t h f s MblFn
61 unieq r = t h r = t h
62 61 eqeq1d r = t h r = a t h = a
63 60 62 anbi12d r = t h f : a s r f s MblFn r = a f : a s t h f s MblFn t h = a
64 63 imbi1d r = t h f : a s r f s MblFn r = a f MblFn f : a s t h f s MblFn t h = a f MblFn
65 64 2albidv r = t h f a f : a s r f s MblFn r = a f MblFn f a f : a s t h f s MblFn t h = a f MblFn
66 raleq r = S s r f s MblFn s S f s MblFn
67 66 anbi2d r = S f : a s r f s MblFn f : a s S f s MblFn
68 unieq r = S r = S
69 68 eqeq1d r = S r = a S = a
70 67 69 anbi12d r = S f : a s r f s MblFn r = a f : a s S f s MblFn S = a
71 70 imbi1d r = S f : a s r f s MblFn r = a f MblFn f : a s S f s MblFn S = a f MblFn
72 71 2albidv r = S f a f : a s r f s MblFn r = a f MblFn f a f : a s S f s MblFn S = a f MblFn
73 frel f : a Rel f
74 73 adantr f : a = a Rel f
75 fdm f : a dom f = a
76 eqcom = a a =
77 76 biimpi = a a =
78 75 77 sylan9eq f : a = a dom f =
79 reldm0 Rel f f = dom f =
80 79 biimpar Rel f dom f = f =
81 mbf0 MblFn
82 80 81 eqeltrdi Rel f dom f = f MblFn
83 74 78 82 syl2anc f : a = a f MblFn
84 83 gen2 f a f : a = a f MblFn
85 ref :
86 fco : f : a f : a
87 85 86 mpan f : a f : a
88 87 adantr f : a s t h f s MblFn f : a
89 88 ad2antrl g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f : a
90 recncf : cn
91 90 elexi V
92 vex f V
93 91 92 coex f V
94 93 resex f t V
95 vuniex t V
96 eqcom b = t t = b
97 96 biimpi b = t t = b
98 97 adantl g = f t b = t t = b
99 98 biantrud g = f t b = t g : b s t g s MblFn g : b s t g s MblFn t = b
100 eqid =
101 feq123 g = f t b = t = g : b f t : t
102 100 101 mp3an3 g = f t b = t g : b f t : t
103 reseq1 g = f t g s = f t s
104 103 eleq1d g = f t g s MblFn f t s MblFn
105 104 adantr g = f t b = t g s MblFn f t s MblFn
106 105 ralbidv g = f t b = t s t g s MblFn s t f t s MblFn
107 102 106 anbi12d g = f t b = t g : b s t g s MblFn f t : t s t f t s MblFn
108 99 107 bitr3d g = f t b = t g : b s t g s MblFn t = b f t : t s t f t s MblFn
109 eleq1 g = f t g MblFn f t MblFn
110 109 adantr g = f t b = t g MblFn f t MblFn
111 108 110 imbi12d g = f t b = t g : b s t g s MblFn t = b g MblFn f t : t s t f t s MblFn f t MblFn
112 111 spc2gv f t V t V g b g : b s t g s MblFn t = b g MblFn f t : t s t f t s MblFn f t MblFn
113 94 95 112 mp2an g b g : b s t g s MblFn t = b g MblFn f t : t s t f t s MblFn f t MblFn
114 ax-resscn
115 fss : :
116 85 114 115 mp2an :
117 fco : f : a f : a
118 116 117 mpan f : a f : a
119 ssun1 t t h
120 119 unissi t t h
121 id t h = a t h = a
122 120 121 sseqtrid t h = a t a
123 fssres f : a t a f t : t
124 118 122 123 syl2an f : a t h = a f t : t
125 124 adantlr f : a s t h f s MblFn t h = a f t : t
126 elssuni r t r t
127 126 resabs1d r t f t r = f r
128 resco f r = f r
129 127 128 eqtrdi r t f t r = f r
130 129 adantl f : a s t h f s MblFn r t f t r = f r
131 elun1 r t r t h
132 reseq2 s = r f s = f r
133 132 eleq1d s = r f s MblFn f r MblFn
134 133 rspccva s t h f s MblFn r t h f r MblFn
135 131 134 sylan2 s t h f s MblFn r t f r MblFn
136 135 adantll f : a s t h f s MblFn r t f r MblFn
137 fresin f : a f r : a r
138 ismbfcn f r : a r f r MblFn f r MblFn f r MblFn
139 137 138 syl f : a f r MblFn f r MblFn f r MblFn
140 139 biimpd f : a f r MblFn f r MblFn f r MblFn
141 140 ad2antrr f : a s t h f s MblFn r t f r MblFn f r MblFn f r MblFn
142 136 141 mpd f : a s t h f s MblFn r t f r MblFn f r MblFn
143 142 simpld f : a s t h f s MblFn r t f r MblFn
144 130 143 eqeltrd f : a s t h f s MblFn r t f t r MblFn
145 144 ralrimiva f : a s t h f s MblFn r t f t r MblFn
146 reseq2 r = s f t r = f t s
147 146 eleq1d r = s f t r MblFn f t s MblFn
148 147 cbvralvw r t f t r MblFn s t f t s MblFn
149 145 148 sylib f : a s t h f s MblFn s t f t s MblFn
150 149 adantr f : a s t h f s MblFn t h = a s t f t s MblFn
151 pm2.27 f t : t s t f t s MblFn f t : t s t f t s MblFn f t MblFn f t MblFn
152 125 150 151 syl2anc f : a s t h f s MblFn t h = a f t : t s t f t s MblFn f t MblFn f t MblFn
153 113 152 mpan9 g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f t MblFn
154 vsnid h h
155 elun2 h h h t h
156 reseq2 s = h f s = f h
157 156 eleq1d s = h f s MblFn f h MblFn
158 157 rspcv h t h s t h f s MblFn f h MblFn
159 154 155 158 mp2b s t h f s MblFn f h MblFn
160 resco f h = f h
161 fresin f : a f h : a h
162 ismbfcn f h : a h f h MblFn f h MblFn f h MblFn
163 161 162 syl f : a f h MblFn f h MblFn f h MblFn
164 163 simprbda f : a f h MblFn f h MblFn
165 160 164 eqeltrid f : a f h MblFn f h MblFn
166 159 165 sylan2 f : a s t h f s MblFn f h MblFn
167 166 ad2antrl g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f h MblFn
168 uniun t h = t h
169 vex h V
170 169 unisn h = h
171 170 uneq2i t h = t h
172 168 171 eqtri t h = t h
173 172 121 eqtr3id t h = a t h = a
174 173 ad2antll g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a t h = a
175 89 153 167 174 mbfres2 g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f MblFn
176 imf :
177 fco : f : a f : a
178 176 177 mpan f : a f : a
179 178 adantr f : a s t h f s MblFn f : a
180 179 ad2antrl g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f : a
181 imcncf : cn
182 181 elexi V
183 182 92 coex f V
184 183 resex f t V
185 97 adantl g = f t b = t t = b
186 185 biantrud g = f t b = t g : b s t g s MblFn g : b s t g s MblFn t = b
187 feq123 g = f t b = t = g : b f t : t
188 100 187 mp3an3 g = f t b = t g : b f t : t
189 reseq1 g = f t g s = f t s
190 189 eleq1d g = f t g s MblFn f t s MblFn
191 190 adantr g = f t b = t g s MblFn f t s MblFn
192 191 ralbidv g = f t b = t s t g s MblFn s t f t s MblFn
193 188 192 anbi12d g = f t b = t g : b s t g s MblFn f t : t s t f t s MblFn
194 186 193 bitr3d g = f t b = t g : b s t g s MblFn t = b f t : t s t f t s MblFn
195 eleq1 g = f t g MblFn f t MblFn
196 195 adantr g = f t b = t g MblFn f t MblFn
197 194 196 imbi12d g = f t b = t g : b s t g s MblFn t = b g MblFn f t : t s t f t s MblFn f t MblFn
198 197 spc2gv f t V t V g b g : b s t g s MblFn t = b g MblFn f t : t s t f t s MblFn f t MblFn
199 184 95 198 mp2an g b g : b s t g s MblFn t = b g MblFn f t : t s t f t s MblFn f t MblFn
200 fss : :
201 176 114 200 mp2an :
202 fco : f : a f : a
203 201 202 mpan f : a f : a
204 fssres f : a t a f t : t
205 203 122 204 syl2an f : a t h = a f t : t
206 205 adantlr f : a s t h f s MblFn t h = a f t : t
207 126 resabs1d r t f t r = f r
208 resco f r = f r
209 207 208 eqtrdi r t f t r = f r
210 209 adantl f : a s t h f s MblFn r t f t r = f r
211 142 simprd f : a s t h f s MblFn r t f r MblFn
212 210 211 eqeltrd f : a s t h f s MblFn r t f t r MblFn
213 212 ralrimiva f : a s t h f s MblFn r t f t r MblFn
214 reseq2 r = s f t r = f t s
215 214 eleq1d r = s f t r MblFn f t s MblFn
216 215 cbvralvw r t f t r MblFn s t f t s MblFn
217 213 216 sylib f : a s t h f s MblFn s t f t s MblFn
218 217 adantr f : a s t h f s MblFn t h = a s t f t s MblFn
219 pm2.27 f t : t s t f t s MblFn f t : t s t f t s MblFn f t MblFn f t MblFn
220 206 218 219 syl2anc f : a s t h f s MblFn t h = a f t : t s t f t s MblFn f t MblFn f t MblFn
221 199 220 mpan9 g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f t MblFn
222 resco f h = f h
223 163 simplbda f : a f h MblFn f h MblFn
224 222 223 eqeltrid f : a f h MblFn f h MblFn
225 159 224 sylan2 f : a s t h f s MblFn f h MblFn
226 225 ad2antrl g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f h MblFn
227 180 221 226 174 mbfres2 g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f MblFn
228 ismbfcn f : a f MblFn f MblFn f MblFn
229 228 adantr f : a s t h f s MblFn f MblFn f MblFn f MblFn
230 229 ad2antrl g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f MblFn f MblFn f MblFn
231 175 227 230 mpbir2and g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f MblFn
232 231 ex g b g : b s t g s MblFn t = b g MblFn f : a s t h f s MblFn t h = a f MblFn
233 232 alrimivv g b g : b s t g s MblFn t = b g MblFn f a f : a s t h f s MblFn t h = a f MblFn
234 233 a1i t Fin g b g : b s t g s MblFn t = b g MblFn f a f : a s t h f s MblFn t h = a f MblFn
235 35 58 65 72 84 234 findcard2 S Fin f a f : a s S f s MblFn S = a f MblFn
236 2sp f a f : a s S f s MblFn S = a f MblFn f : a s S f s MblFn S = a f MblFn
237 2 235 236 3syl φ f : a s S f s MblFn S = a f MblFn
238 16 25 237 vtocl2g A V F V φ F : A s S F s MblFn S = A F MblFn
239 10 238 mpcom φ F : A s S F s MblFn S = A F MblFn
240 4 239 mpan2d φ F : A s S F s MblFn F MblFn
241 1 3 240 mp2and φ F MblFn