| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bren |
|- ( NN ~~ A <-> E. f f : NN -1-1-onto-> A ) |
| 2 |
|
simpll |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> A C_ RR ) |
| 3 |
|
f1of |
|- ( f : NN -1-1-onto-> A -> f : NN --> A ) |
| 4 |
3
|
adantl |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f : NN --> A ) |
| 5 |
4
|
ffvelcdmda |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. A ) |
| 6 |
2 5
|
sseldd |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. RR ) |
| 7 |
6
|
leidd |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) <_ ( f ` x ) ) |
| 8 |
|
df-br |
|- ( ( f ` x ) <_ ( f ` x ) <-> <. ( f ` x ) , ( f ` x ) >. e. <_ ) |
| 9 |
7 8
|
sylib |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. <_ ) |
| 10 |
6 6
|
opelxpd |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( RR X. RR ) ) |
| 11 |
9 10
|
elind |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( <_ i^i ( RR X. RR ) ) ) |
| 12 |
|
df-ov |
|- ( ( f ` x ) _I ( f ` x ) ) = ( _I ` <. ( f ` x ) , ( f ` x ) >. ) |
| 13 |
|
opex |
|- <. ( f ` x ) , ( f ` x ) >. e. _V |
| 14 |
|
fvi |
|- ( <. ( f ` x ) , ( f ` x ) >. e. _V -> ( _I ` <. ( f ` x ) , ( f ` x ) >. ) = <. ( f ` x ) , ( f ` x ) >. ) |
| 15 |
13 14
|
ax-mp |
|- ( _I ` <. ( f ` x ) , ( f ` x ) >. ) = <. ( f ` x ) , ( f ` x ) >. |
| 16 |
12 15
|
eqtri |
|- ( ( f ` x ) _I ( f ` x ) ) = <. ( f ` x ) , ( f ` x ) >. |
| 17 |
16
|
mpteq2i |
|- ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) |
| 18 |
11 17
|
fmptd |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 19 |
|
nnex |
|- NN e. _V |
| 20 |
19
|
a1i |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> NN e. _V ) |
| 21 |
6
|
recnd |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) e. CC ) |
| 22 |
4
|
feqmptd |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f = ( x e. NN |-> ( f ` x ) ) ) |
| 23 |
20 21 21 22 22
|
offval2 |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) = ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) ) |
| 24 |
23
|
feq1d |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) <-> ( x e. NN |-> ( ( f ` x ) _I ( f ` x ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) ) |
| 25 |
18 24
|
mpbird |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 26 |
|
f1ofo |
|- ( f : NN -1-1-onto-> A -> f : NN -onto-> A ) |
| 27 |
26
|
adantl |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f : NN -onto-> A ) |
| 28 |
|
forn |
|- ( f : NN -onto-> A -> ran f = A ) |
| 29 |
27 28
|
syl |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran f = A ) |
| 30 |
29
|
eleq2d |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. ran f <-> y e. A ) ) |
| 31 |
|
f1ofn |
|- ( f : NN -1-1-onto-> A -> f Fn NN ) |
| 32 |
31
|
adantl |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> f Fn NN ) |
| 33 |
|
fvelrnb |
|- ( f Fn NN -> ( y e. ran f <-> E. x e. NN ( f ` x ) = y ) ) |
| 34 |
32 33
|
syl |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. ran f <-> E. x e. NN ( f ` x ) = y ) ) |
| 35 |
30 34
|
bitr3d |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. A <-> E. x e. NN ( f ` x ) = y ) ) |
| 36 |
23 17
|
eqtrdi |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( f oF _I f ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ) |
| 37 |
36
|
fveq1d |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( f oF _I f ) ` x ) = ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) ) |
| 38 |
|
eqid |
|- ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) = ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) |
| 39 |
38
|
fvmpt2 |
|- ( ( x e. NN /\ <. ( f ` x ) , ( f ` x ) >. e. _V ) -> ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) |
| 40 |
13 39
|
mpan2 |
|- ( x e. NN -> ( ( x e. NN |-> <. ( f ` x ) , ( f ` x ) >. ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) |
| 41 |
37 40
|
sylan9eq |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f oF _I f ) ` x ) = <. ( f ` x ) , ( f ` x ) >. ) |
| 42 |
41
|
fveq2d |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) = ( 1st ` <. ( f ` x ) , ( f ` x ) >. ) ) |
| 43 |
|
fvex |
|- ( f ` x ) e. _V |
| 44 |
43 43
|
op1st |
|- ( 1st ` <. ( f ` x ) , ( f ` x ) >. ) = ( f ` x ) |
| 45 |
42 44
|
eqtrdi |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) = ( f ` x ) ) |
| 46 |
45 7
|
eqbrtrd |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) ) |
| 47 |
41
|
fveq2d |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 2nd ` ( ( f oF _I f ) ` x ) ) = ( 2nd ` <. ( f ` x ) , ( f ` x ) >. ) ) |
| 48 |
43 43
|
op2nd |
|- ( 2nd ` <. ( f ` x ) , ( f ` x ) >. ) = ( f ` x ) |
| 49 |
47 48
|
eqtrdi |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( 2nd ` ( ( f oF _I f ) ` x ) ) = ( f ` x ) ) |
| 50 |
7 49
|
breqtrrd |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) |
| 51 |
46 50
|
jca |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) /\ ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) |
| 52 |
|
breq2 |
|- ( ( f ` x ) = y -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) <-> ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y ) ) |
| 53 |
|
breq1 |
|- ( ( f ` x ) = y -> ( ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) <-> y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) |
| 54 |
52 53
|
anbi12d |
|- ( ( f ` x ) = y -> ( ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ ( f ` x ) /\ ( f ` x ) <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) <-> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 55 |
51 54
|
syl5ibcom |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f ` x ) = y -> ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 56 |
55
|
reximdva |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( E. x e. NN ( f ` x ) = y -> E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 57 |
35 56
|
sylbid |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( y e. A -> E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 58 |
57
|
ralrimiv |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) |
| 59 |
|
ovolficc |
|- ( ( A C_ RR /\ ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) ) -> ( A C_ U. ran ( [,] o. ( f oF _I f ) ) <-> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 60 |
25 59
|
syldan |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( A C_ U. ran ( [,] o. ( f oF _I f ) ) <-> A. y e. A E. x e. NN ( ( 1st ` ( ( f oF _I f ) ` x ) ) <_ y /\ y <_ ( 2nd ` ( ( f oF _I f ) ` x ) ) ) ) ) |
| 61 |
58 60
|
mpbird |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> A C_ U. ran ( [,] o. ( f oF _I f ) ) ) |
| 62 |
|
eqid |
|- seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) |
| 63 |
62
|
ovollb2 |
|- ( ( ( f oF _I f ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( [,] o. ( f oF _I f ) ) ) -> ( vol* ` A ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) ) |
| 64 |
25 61 63
|
syl2anc |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) <_ sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) ) |
| 65 |
21 21
|
opelxpd |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> <. ( f ` x ) , ( f ` x ) >. e. ( CC X. CC ) ) |
| 66 |
|
absf |
|- abs : CC --> RR |
| 67 |
|
subf |
|- - : ( CC X. CC ) --> CC |
| 68 |
|
fco |
|- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
| 69 |
66 67 68
|
mp2an |
|- ( abs o. - ) : ( CC X. CC ) --> RR |
| 70 |
69
|
a1i |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
| 71 |
70
|
feqmptd |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( abs o. - ) = ( y e. ( CC X. CC ) |-> ( ( abs o. - ) ` y ) ) ) |
| 72 |
|
fveq2 |
|- ( y = <. ( f ` x ) , ( f ` x ) >. -> ( ( abs o. - ) ` y ) = ( ( abs o. - ) ` <. ( f ` x ) , ( f ` x ) >. ) ) |
| 73 |
|
df-ov |
|- ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = ( ( abs o. - ) ` <. ( f ` x ) , ( f ` x ) >. ) |
| 74 |
72 73
|
eqtr4di |
|- ( y = <. ( f ` x ) , ( f ` x ) >. -> ( ( abs o. - ) ` y ) = ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) |
| 75 |
65 36 71 74
|
fmptco |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( x e. NN |-> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) ) |
| 76 |
|
cnmet |
|- ( abs o. - ) e. ( Met ` CC ) |
| 77 |
|
met0 |
|- ( ( ( abs o. - ) e. ( Met ` CC ) /\ ( f ` x ) e. CC ) -> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = 0 ) |
| 78 |
76 21 77
|
sylancr |
|- ( ( ( A C_ RR /\ f : NN -1-1-onto-> A ) /\ x e. NN ) -> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) = 0 ) |
| 79 |
78
|
mpteq2dva |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( x e. NN |-> ( ( f ` x ) ( abs o. - ) ( f ` x ) ) ) = ( x e. NN |-> 0 ) ) |
| 80 |
75 79
|
eqtrd |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( x e. NN |-> 0 ) ) |
| 81 |
|
fconstmpt |
|- ( NN X. { 0 } ) = ( x e. NN |-> 0 ) |
| 82 |
80 81
|
eqtr4di |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( abs o. - ) o. ( f oF _I f ) ) = ( NN X. { 0 } ) ) |
| 83 |
82
|
seqeq3d |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = seq 1 ( + , ( NN X. { 0 } ) ) ) |
| 84 |
|
1z |
|- 1 e. ZZ |
| 85 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 86 |
85
|
ser0f |
|- ( 1 e. ZZ -> seq 1 ( + , ( NN X. { 0 } ) ) = ( NN X. { 0 } ) ) |
| 87 |
84 86
|
ax-mp |
|- seq 1 ( + , ( NN X. { 0 } ) ) = ( NN X. { 0 } ) |
| 88 |
83 87
|
eqtrdi |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = ( NN X. { 0 } ) ) |
| 89 |
88
|
rneqd |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = ran ( NN X. { 0 } ) ) |
| 90 |
|
1nn |
|- 1 e. NN |
| 91 |
|
ne0i |
|- ( 1 e. NN -> NN =/= (/) ) |
| 92 |
|
rnxp |
|- ( NN =/= (/) -> ran ( NN X. { 0 } ) = { 0 } ) |
| 93 |
90 91 92
|
mp2b |
|- ran ( NN X. { 0 } ) = { 0 } |
| 94 |
89 93
|
eqtrdi |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) = { 0 } ) |
| 95 |
94
|
supeq1d |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) = sup ( { 0 } , RR* , < ) ) |
| 96 |
|
xrltso |
|- < Or RR* |
| 97 |
|
0xr |
|- 0 e. RR* |
| 98 |
|
supsn |
|- ( ( < Or RR* /\ 0 e. RR* ) -> sup ( { 0 } , RR* , < ) = 0 ) |
| 99 |
96 97 98
|
mp2an |
|- sup ( { 0 } , RR* , < ) = 0 |
| 100 |
95 99
|
eqtrdi |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. ( f oF _I f ) ) ) , RR* , < ) = 0 ) |
| 101 |
64 100
|
breqtrd |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) <_ 0 ) |
| 102 |
|
ovolge0 |
|- ( A C_ RR -> 0 <_ ( vol* ` A ) ) |
| 103 |
102
|
adantr |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> 0 <_ ( vol* ` A ) ) |
| 104 |
|
ovolcl |
|- ( A C_ RR -> ( vol* ` A ) e. RR* ) |
| 105 |
104
|
adantr |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) e. RR* ) |
| 106 |
|
xrletri3 |
|- ( ( ( vol* ` A ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
| 107 |
105 97 106
|
sylancl |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( ( vol* ` A ) = 0 <-> ( ( vol* ` A ) <_ 0 /\ 0 <_ ( vol* ` A ) ) ) ) |
| 108 |
101 103 107
|
mpbir2and |
|- ( ( A C_ RR /\ f : NN -1-1-onto-> A ) -> ( vol* ` A ) = 0 ) |
| 109 |
108
|
ex |
|- ( A C_ RR -> ( f : NN -1-1-onto-> A -> ( vol* ` A ) = 0 ) ) |
| 110 |
109
|
exlimdv |
|- ( A C_ RR -> ( E. f f : NN -1-1-onto-> A -> ( vol* ` A ) = 0 ) ) |
| 111 |
1 110
|
biimtrid |
|- ( A C_ RR -> ( NN ~~ A -> ( vol* ` A ) = 0 ) ) |
| 112 |
|
ensym |
|- ( A ~~ NN -> NN ~~ A ) |
| 113 |
111 112
|
impel |
|- ( ( A C_ RR /\ A ~~ NN ) -> ( vol* ` A ) = 0 ) |