Step |
Hyp |
Ref |
Expression |
1 |
|
exdistrf.1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝜑 ) |
2 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) |
3 |
|
19.8a |
⊢ ( 𝜓 → ∃ 𝑦 𝜓 ) |
4 |
3
|
anim2i |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
5 |
4
|
eximi |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑦 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
6 |
|
biidd |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
7 |
6
|
drex1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ↔ ∃ 𝑦 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
8 |
5 7
|
syl5ibr |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
9 |
|
19.40 |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑦 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
10 |
1
|
19.9d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 𝜑 → 𝜑 ) ) |
11 |
10
|
anim1d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ( ∃ 𝑦 𝜑 ∧ ∃ 𝑦 𝜓 ) → ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
12 |
|
19.8a |
⊢ ( ( 𝜑 ∧ ∃ 𝑦 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
13 |
9 11 12
|
syl56 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) ) |
14 |
8 13
|
pm2.61i |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
15 |
2 14
|
exlimi |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |