| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exdistrf.1 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝜑 ) | 
						
							| 2 |  | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 𝜓 ) | 
						
							| 3 |  | 19.8a | ⊢ ( 𝜓  →  ∃ 𝑦 𝜓 ) | 
						
							| 4 | 3 | anim2i | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) | 
						
							| 5 | 4 | eximi | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  𝜓 )  →  ∃ 𝑦 ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) | 
						
							| 6 |  | biidd | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ( 𝜑  ∧  ∃ 𝑦 𝜓 )  ↔  ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) ) | 
						
							| 7 | 6 | drex1 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 𝜓 )  ↔  ∃ 𝑦 ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) ) | 
						
							| 8 | 5 7 | imbitrrid | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑦 ( 𝜑  ∧  𝜓 )  →  ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) ) | 
						
							| 9 |  | 19.40 | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  𝜓 )  →  ( ∃ 𝑦 𝜑  ∧  ∃ 𝑦 𝜓 ) ) | 
						
							| 10 | 1 | 19.9d | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑦 𝜑  →  𝜑 ) ) | 
						
							| 11 | 10 | anim1d | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ( ∃ 𝑦 𝜑  ∧  ∃ 𝑦 𝜓 )  →  ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) ) | 
						
							| 12 |  | 19.8a | ⊢ ( ( 𝜑  ∧  ∃ 𝑦 𝜓 )  →  ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) | 
						
							| 13 | 9 11 12 | syl56 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑦 ( 𝜑  ∧  𝜓 )  →  ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) ) | 
						
							| 14 | 8 13 | pm2.61i | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  𝜓 )  →  ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) | 
						
							| 15 | 2 14 | exlimi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∧  𝜓 )  →  ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 𝜓 ) ) |