| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) |
| 2 |
|
php3 |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊊ 𝐵 ) → 𝐴 ≺ 𝐵 ) |
| 3 |
|
sdomnen |
⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊊ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 5 |
4
|
ex |
⊢ ( 𝐵 ∈ Fin → ( 𝐴 ⊊ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 6 |
1 5
|
biimtrrid |
⊢ ( 𝐵 ∈ Fin → ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 8 |
7
|
expd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ⊆ 𝐵 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 9 |
|
dfpss2 |
⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ) |
| 10 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
| 11 |
10
|
notbii |
⊢ ( ¬ 𝐵 = 𝐴 ↔ ¬ 𝐴 = 𝐵 ) |
| 12 |
11
|
anbi2i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
| 13 |
9 12
|
bitri |
⊢ ( 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) ) |
| 14 |
|
php3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
| 15 |
|
sdomnen |
⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐵 ≈ 𝐴 ) |
| 16 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
| 17 |
15 16
|
nsyl |
⊢ ( 𝐵 ≺ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) |
| 18 |
14 17
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |
| 19 |
18
|
ex |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 20 |
13 19
|
biimtrrid |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐵 ⊆ 𝐴 ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 22 |
21
|
expd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐵 ⊆ 𝐴 → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 23 |
8 22
|
jaod |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 24 |
23
|
3impia |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( ¬ 𝐴 = 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 25 |
24
|
con4d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) |
| 26 |
|
eqeng |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 27 |
26
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
| 28 |
25 27
|
impbid |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |