| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 2 |
1
|
flimelbas |
⊢ ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → 𝑥 ∈ ∪ 𝐾 ) |
| 3 |
2
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑥 ∈ ∪ 𝐾 ) |
| 4 |
|
simpl2 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 5 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 6 |
4 5
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ∪ 𝐹 = 𝑋 ) |
| 7 |
1
|
flimfil |
⊢ ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐾 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐾 ) ) |
| 9 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐾 ) → ∪ 𝐹 = ∪ 𝐾 ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ∪ 𝐹 = ∪ 𝐾 ) |
| 11 |
6 10
|
eqtr3d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑋 = ∪ 𝐾 ) |
| 12 |
3 11
|
eleqtrrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑥 ∈ 𝑋 ) |
| 13 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 14 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐽 ∈ Top ) |
| 16 |
|
flimtop |
⊢ ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → 𝐾 ∈ Top ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐾 ∈ Top ) |
| 18 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 19 |
13 18
|
syl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
| 20 |
19 11
|
eqtr3d |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ∪ 𝐽 = ∪ 𝐾 ) |
| 21 |
|
simpl3 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝐽 ⊆ 𝐾 ) |
| 22 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 23 |
22 1
|
topssnei |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐾 ) ∧ 𝐽 ⊆ 𝐾 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ ( ( nei ‘ 𝐾 ) ‘ { 𝑥 } ) ) |
| 24 |
15 17 20 21 23
|
syl31anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ ( ( nei ‘ 𝐾 ) ‘ { 𝑥 } ) ) |
| 25 |
|
flimneiss |
⊢ ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → ( ( nei ‘ 𝐾 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) |
| 26 |
25
|
adantl |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ( ( nei ‘ 𝐾 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) |
| 27 |
24 26
|
sstrd |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) |
| 28 |
|
elflim |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) ) |
| 29 |
13 4 28
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ⊆ 𝐹 ) ) ) |
| 30 |
12 27 29
|
mpbir2and |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) ∧ 𝑥 ∈ ( 𝐾 fLim 𝐹 ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 31 |
30
|
ex |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝑥 ∈ ( 𝐾 fLim 𝐹 ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 32 |
31
|
ssrdv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → ( 𝐾 fLim 𝐹 ) ⊆ ( 𝐽 fLim 𝐹 ) ) |