| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprod2d.1 |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) |
| 2 |
|
fprod2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fprod2d.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
| 4 |
|
fprod2d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 5 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 6 |
|
sseq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
| 7 |
|
prodeq1 |
⊢ ( 𝑤 = ∅ → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 ) |
| 8 |
|
iuneq1 |
⊢ ( 𝑤 = ∅ → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) ) |
| 9 |
|
0iun |
⊢ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) = ∅ |
| 10 |
8 9
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∅ ) |
| 11 |
10
|
prodeq1d |
⊢ ( 𝑤 = ∅ → ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ∅ 𝐷 ) |
| 12 |
7 11
|
eqeq12d |
⊢ ( 𝑤 = ∅ → ( ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 ) ) |
| 13 |
6 12
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( ∅ ⊆ 𝐴 → ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 ) ) ) ) |
| 15 |
|
sseq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) |
| 16 |
|
prodeq1 |
⊢ ( 𝑤 = 𝑥 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 ) |
| 17 |
|
iuneq1 |
⊢ ( 𝑤 = 𝑥 → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ) |
| 18 |
17
|
prodeq1d |
⊢ ( 𝑤 = 𝑥 → ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 19 |
16 18
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 20 |
15 19
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 22 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( 𝑤 ⊆ 𝐴 ↔ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) |
| 23 |
|
prodeq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 ) |
| 24 |
|
iuneq1 |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ) |
| 25 |
24
|
prodeq1d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 26 |
23 25
|
eqeq12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 27 |
22 26
|
imbi12d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 29 |
|
sseq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 30 |
|
prodeq1 |
⊢ ( 𝑤 = 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 ) |
| 31 |
|
iuneq1 |
⊢ ( 𝑤 = 𝐴 → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 32 |
31
|
prodeq1d |
⊢ ( 𝑤 = 𝐴 → ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 33 |
30 32
|
eqeq12d |
⊢ ( 𝑤 = 𝐴 → ( ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 34 |
29 33
|
imbi12d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( 𝐴 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 35 |
34
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑤 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 36 |
|
prod0 |
⊢ ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = 1 |
| 37 |
|
prod0 |
⊢ ∏ 𝑧 ∈ ∅ 𝐷 = 1 |
| 38 |
36 37
|
eqtr4i |
⊢ ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 |
| 39 |
38
|
2a1i |
⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → ∏ 𝑗 ∈ ∅ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∅ 𝐷 ) ) |
| 40 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) |
| 41 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
| 42 |
40 41
|
mpan |
⊢ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) |
| 43 |
42
|
imim1i |
⊢ ( ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 44 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 45 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
| 46 |
4
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 47 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ¬ 𝑦 ∈ 𝑥 ) |
| 48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) |
| 49 |
|
biid |
⊢ ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 50 |
1 44 45 46 47 48 49
|
fprod2dlem |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 51 |
50
|
exp31 |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 52 |
51
|
a2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 53 |
43 52
|
syl5 |
⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 54 |
53
|
expcom |
⊢ ( ¬ 𝑦 ∈ 𝑥 → ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 55 |
54
|
a2d |
⊢ ( ¬ 𝑦 ∈ 𝑥 → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ∏ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 57 |
14 21 28 35 39 56
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 58 |
2 57
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 59 |
5 58
|
mpi |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |