| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrwopreg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreg.a | ⊢ 𝐴  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 4 |  | frgrwopreg.b | ⊢ 𝐵  =  ( 𝑉  ∖  𝐴 ) | 
						
							| 5 |  | frgrwopreg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 | 3 | reqabi | ⊢ ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝑉  ∧  ( 𝐷 ‘ 𝑥 )  =  𝐾 ) ) | 
						
							| 7 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝐷 ‘ 𝑥 )  =  𝐾  ↔  ( 𝐷 ‘ 𝑎 )  =  𝐾 ) ) | 
						
							| 8 | 7 3 | elrab2 | ⊢ ( 𝑎  ∈  𝐴  ↔  ( 𝑎  ∈  𝑉  ∧  ( 𝐷 ‘ 𝑎 )  =  𝐾 ) ) | 
						
							| 9 |  | eqtr3 | ⊢ ( ( ( 𝐷 ‘ 𝑎 )  =  𝐾  ∧  ( 𝐷 ‘ 𝑥 )  =  𝐾 )  →  ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 ) ) | 
						
							| 10 | 9 | expcom | ⊢ ( ( 𝐷 ‘ 𝑥 )  =  𝐾  →  ( ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑥  ∈  𝑉  ∧  ( 𝐷 ‘ 𝑥 )  =  𝐾 )  →  ( ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 ) ) ) | 
						
							| 12 | 11 | com12 | ⊢ ( ( 𝐷 ‘ 𝑎 )  =  𝐾  →  ( ( 𝑥  ∈  𝑉  ∧  ( 𝐷 ‘ 𝑥 )  =  𝐾 )  →  ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 ) ) ) | 
						
							| 13 | 8 12 | simplbiim | ⊢ ( 𝑎  ∈  𝐴  →  ( ( 𝑥  ∈  𝑉  ∧  ( 𝐷 ‘ 𝑥 )  =  𝐾 )  →  ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 ) ) ) | 
						
							| 14 | 6 13 | biimtrid | ⊢ ( 𝑎  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 ) ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 ) ) | 
						
							| 17 | 1 2 3 4 | frgrwopreglem3 | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑎 )  ≠  ( 𝐷 ‘ 𝑏 ) ) | 
						
							| 18 | 17 | ad2ant2r | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐷 ‘ 𝑎 )  ≠  ( 𝐷 ‘ 𝑏 ) ) | 
						
							| 19 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐷 ‘ 𝑥 )  =  𝐾  ↔  ( 𝐷 ‘ 𝑧 )  =  𝐾 ) ) | 
						
							| 20 | 19 | cbvrabv | ⊢ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  { 𝑧  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑧 )  =  𝐾 } | 
						
							| 21 | 3 20 | eqtri | ⊢ 𝐴  =  { 𝑧  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑧 )  =  𝐾 } | 
						
							| 22 | 1 2 21 4 | frgrwopreglem3 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑥 )  ≠  ( 𝐷 ‘ 𝑦 ) ) | 
						
							| 23 | 22 | ad2ant2l | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐷 ‘ 𝑥 )  ≠  ( 𝐷 ‘ 𝑦 ) ) | 
						
							| 24 | 16 18 23 | 3jca | ⊢ ( ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐷 ‘ 𝑎 )  =  ( 𝐷 ‘ 𝑥 )  ∧  ( 𝐷 ‘ 𝑎 )  ≠  ( 𝐷 ‘ 𝑏 )  ∧  ( 𝐷 ‘ 𝑥 )  ≠  ( 𝐷 ‘ 𝑦 ) ) ) |