Metamath Proof Explorer


Theorem frinxp

Description: Intersection of well-founded relation with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014)

Ref Expression
Assertion frinxp ( 𝑅 Fr 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝑧𝐴 → ( 𝑥𝑧𝑥𝐴 ) )
2 ssel ( 𝑧𝐴 → ( 𝑦𝑧𝑦𝐴 ) )
3 1 2 anim12d ( 𝑧𝐴 → ( ( 𝑥𝑧𝑦𝑧 ) → ( 𝑥𝐴𝑦𝐴 ) ) )
4 brinxp ( ( 𝑦𝐴𝑥𝐴 ) → ( 𝑦 𝑅 𝑥𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
5 4 ancoms ( ( 𝑥𝐴𝑦𝐴 ) → ( 𝑦 𝑅 𝑥𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
6 3 5 syl6 ( 𝑧𝐴 → ( ( 𝑥𝑧𝑦𝑧 ) → ( 𝑦 𝑅 𝑥𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) )
7 6 impl ( ( ( 𝑧𝐴𝑥𝑧 ) ∧ 𝑦𝑧 ) → ( 𝑦 𝑅 𝑥𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
8 7 notbid ( ( ( 𝑧𝐴𝑥𝑧 ) ∧ 𝑦𝑧 ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
9 8 ralbidva ( ( 𝑧𝐴𝑥𝑧 ) → ( ∀ 𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
10 9 rexbidva ( 𝑧𝐴 → ( ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
11 10 adantr ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ( ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ↔ ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
12 11 pm5.74i ( ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
13 12 albii ( ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
14 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 𝑅 𝑥 ) )
15 df-fr ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 ↔ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ) → ∃ 𝑥𝑧𝑦𝑧 ¬ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) )
16 13 14 15 3bitr4i ( 𝑅 Fr 𝐴 ↔ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) Fr 𝐴 )