Step |
Hyp |
Ref |
Expression |
1 |
|
frlmsslss.y |
⊢ 𝑌 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmsslss.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑌 ) |
3 |
|
frlmsslss.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
4 |
|
frlmsslss.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
frlmsslss.c |
⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 𝐽 × { 0 } ) } |
6 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝑅 ∈ Ring ) |
7 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
8 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐽 ⊆ 𝐼 ) |
9 |
7 8
|
ssexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐽 ∈ V ) |
10 |
|
eqid |
⊢ ( 𝑅 freeLMod 𝐽 ) = ( 𝑅 freeLMod 𝐽 ) |
11 |
10 4
|
frlm0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ V ) → ( 𝐽 × { 0 } ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ) |
12 |
6 9 11
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( 𝐽 × { 0 } ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( ( 𝑥 ↾ 𝐽 ) = ( 𝐽 × { 0 } ) ↔ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ) ) |
14 |
13
|
rabbidv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 𝐽 × { 0 } ) } = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) |
15 |
5 14
|
syl5eq |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) |
16 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 freeLMod 𝐽 ) ) = ( Base ‘ ( 𝑅 freeLMod 𝐽 ) ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) |
18 |
1 10 3 16 17
|
frlmsplit2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) ∈ ( 𝑌 LMHom ( 𝑅 freeLMod 𝐽 ) ) ) |
19 |
|
fvex |
⊢ ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ∈ V |
20 |
17
|
mptiniseg |
⊢ ( ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) ∈ V → ( ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) “ { ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) |
21 |
19 20
|
ax-mp |
⊢ ( ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) “ { ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) = { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } |
22 |
21
|
eqcomi |
⊢ { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } = ( ◡ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) “ { ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ) |
23 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) |
24 |
22 23 2
|
lmhmkerlss |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝐽 ) ) ∈ ( 𝑌 LMHom ( 𝑅 freeLMod 𝐽 ) ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ∈ 𝑈 ) |
25 |
18 24
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑥 ↾ 𝐽 ) = ( 0g ‘ ( 𝑅 freeLMod 𝐽 ) ) } ∈ 𝑈 ) |
26 |
15 25
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ) → 𝐶 ∈ 𝑈 ) |