| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsneqrn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
fsneqrn.b |
⊢ 𝐵 = { 𝐴 } |
| 3 |
|
fsneqrn.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 4 |
|
fsneqrn.g |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 5 |
|
dffn3 |
⊢ ( 𝐹 Fn 𝐵 ↔ 𝐹 : 𝐵 ⟶ ran 𝐹 ) |
| 6 |
3 5
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ran 𝐹 ) |
| 7 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
| 9 |
2
|
a1i |
⊢ ( 𝜑 → 𝐵 = { 𝐴 } ) |
| 10 |
9
|
eqcomd |
⊢ ( 𝜑 → { 𝐴 } = 𝐵 ) |
| 11 |
8 10
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 12 |
6 11
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐺 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐺 ) → 𝐹 = 𝐺 ) |
| 15 |
14
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐺 ) → ran 𝐹 = ran 𝐺 ) |
| 16 |
13 15
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝐺 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) |
| 17 |
16
|
ex |
⊢ ( 𝜑 → ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) |
| 19 |
|
dffn2 |
⊢ ( 𝐺 Fn 𝐵 ↔ 𝐺 : 𝐵 ⟶ V ) |
| 20 |
4 19
|
sylib |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ V ) |
| 21 |
9
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ V ↔ 𝐺 : { 𝐴 } ⟶ V ) ) |
| 22 |
20 21
|
mpbid |
⊢ ( 𝜑 → 𝐺 : { 𝐴 } ⟶ V ) |
| 23 |
1 22
|
rnsnf |
⊢ ( 𝜑 → ran 𝐺 = { ( 𝐺 ‘ 𝐴 ) } ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → ran 𝐺 = { ( 𝐺 ‘ 𝐴 ) } ) |
| 25 |
18 24
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → ( 𝐹 ‘ 𝐴 ) ∈ { ( 𝐺 ‘ 𝐴 ) } ) |
| 26 |
|
elsni |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ { ( 𝐺 ‘ 𝐴 ) } → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) |
| 28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → 𝐴 ∈ 𝑉 ) |
| 29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → 𝐹 Fn 𝐵 ) |
| 30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → 𝐺 Fn 𝐵 ) |
| 31 |
28 2 29 30
|
fsneq |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → ( 𝐹 = 𝐺 ↔ ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
| 32 |
27 31
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) → 𝐹 = 𝐺 ) |
| 33 |
32
|
ex |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 → 𝐹 = 𝐺 ) ) |
| 34 |
17 33
|
impbid |
⊢ ( 𝜑 → ( 𝐹 = 𝐺 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐺 ) ) |