Metamath Proof Explorer


Theorem fsummsndifre

Description: A finite sum with one of its integer summands removed is a real number. (Contributed by Alexander van der Vekens, 31-Aug-2018)

Ref Expression
Assertion fsummsndifre ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑋 } ) 𝐵 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝐵
2 nfcsb1v 𝑘 𝑥 / 𝑘 𝐵
3 csbeq1a ( 𝑘 = 𝑥𝐵 = 𝑥 / 𝑘 𝐵 )
4 1 2 3 cbvsumi Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑋 } ) 𝐵 = Σ 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) 𝑥 / 𝑘 𝐵
5 diffi ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑋 } ) ∈ Fin )
6 5 adantr ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → ( 𝐴 ∖ { 𝑋 } ) ∈ Fin )
7 eldifi ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) → 𝑥𝐴 )
8 rspcsbela ( ( 𝑥𝐴 ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → 𝑥 / 𝑘 𝐵 ∈ ℤ )
9 7 8 sylan ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → 𝑥 / 𝑘 𝐵 ∈ ℤ )
10 9 zred ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → 𝑥 / 𝑘 𝐵 ∈ ℝ )
11 10 expcom ( ∀ 𝑘𝐴 𝐵 ∈ ℤ → ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) → 𝑥 / 𝑘 𝐵 ∈ ℝ ) )
12 11 adantl ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → ( 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) → 𝑥 / 𝑘 𝐵 ∈ ℝ ) )
13 12 imp ( ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) ∧ 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) ) → 𝑥 / 𝑘 𝐵 ∈ ℝ )
14 6 13 fsumrecl ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → Σ 𝑥 ∈ ( 𝐴 ∖ { 𝑋 } ) 𝑥 / 𝑘 𝐵 ∈ ℝ )
15 4 14 eqeltrid ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 𝐵 ∈ ℤ ) → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝑋 } ) 𝐵 ∈ ℝ )