| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fthmon.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | fthmon.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | fthmon.f | ⊢ ( 𝜑  →  𝐹 ( 𝐶  Faith  𝐷 ) 𝐺 ) | 
						
							| 4 |  | fthmon.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | fthmon.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | fthmon.r | ⊢ ( 𝜑  →  𝑅  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 7 |  | fthepi.e | ⊢ 𝐸  =  ( Epi ‘ 𝐶 ) | 
						
							| 8 |  | fthepi.p | ⊢ 𝑃  =  ( Epi ‘ 𝐷 ) | 
						
							| 9 |  | fthepi.1 | ⊢ ( 𝜑  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( oppCat ‘ 𝐶 )  =  ( oppCat ‘ 𝐶 ) | 
						
							| 11 | 10 1 | oppcbas | ⊢ 𝐵  =  ( Base ‘ ( oppCat ‘ 𝐶 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Hom  ‘ ( oppCat ‘ 𝐶 ) )  =  ( Hom  ‘ ( oppCat ‘ 𝐶 ) ) | 
						
							| 13 |  | eqid | ⊢ ( oppCat ‘ 𝐷 )  =  ( oppCat ‘ 𝐷 ) | 
						
							| 14 | 10 13 3 | fthoppc | ⊢ ( 𝜑  →  𝐹 ( ( oppCat ‘ 𝐶 )  Faith  ( oppCat ‘ 𝐷 ) ) tpos  𝐺 ) | 
						
							| 15 | 2 10 | oppchom | ⊢ ( 𝑌 ( Hom  ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 )  =  ( 𝑋 𝐻 𝑌 ) | 
						
							| 16 | 6 15 | eleqtrrdi | ⊢ ( 𝜑  →  𝑅  ∈  ( 𝑌 ( Hom  ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) | 
						
							| 17 |  | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) )  =  ( Mono ‘ ( oppCat ‘ 𝐶 ) ) | 
						
							| 18 |  | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝐷 ) )  =  ( Mono ‘ ( oppCat ‘ 𝐷 ) ) | 
						
							| 19 |  | ovtpos | ⊢ ( 𝑌 tpos  𝐺 𝑋 )  =  ( 𝑋 𝐺 𝑌 ) | 
						
							| 20 | 19 | fveq1i | ⊢ ( ( 𝑌 tpos  𝐺 𝑋 ) ‘ 𝑅 )  =  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) | 
						
							| 21 | 20 9 | eqeltrid | ⊢ ( 𝜑  →  ( ( 𝑌 tpos  𝐺 𝑋 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 22 |  | fthfunc | ⊢ ( 𝐶  Faith  𝐷 )  ⊆  ( 𝐶  Func  𝐷 ) | 
						
							| 23 | 22 | ssbri | ⊢ ( 𝐹 ( 𝐶  Faith  𝐷 ) 𝐺  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 ) | 
						
							| 24 | 3 23 | syl | ⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 ) | 
						
							| 25 |  | df-br | ⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 26 | 24 25 | sylib | ⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 27 |  | funcrcl | ⊢ ( 〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 )  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) ) | 
						
							| 29 | 28 | simprd | ⊢ ( 𝜑  →  𝐷  ∈  Cat ) | 
						
							| 30 | 13 29 18 8 | oppcmon | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑌 ) ( Mono ‘ ( oppCat ‘ 𝐷 ) ) ( 𝐹 ‘ 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 31 | 21 30 | eleqtrrd | ⊢ ( 𝜑  →  ( ( 𝑌 tpos  𝐺 𝑋 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑌 ) ( Mono ‘ ( oppCat ‘ 𝐷 ) ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 32 | 11 12 14 5 4 16 17 18 31 | fthmon | ⊢ ( 𝜑  →  𝑅  ∈  ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) | 
						
							| 33 | 28 | simpld | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 34 | 10 33 17 7 | oppcmon | ⊢ ( 𝜑  →  ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 )  =  ( 𝑋 𝐸 𝑌 ) ) | 
						
							| 35 | 32 34 | eleqtrd | ⊢ ( 𝜑  →  𝑅  ∈  ( 𝑋 𝐸 𝑌 ) ) |