| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fthmon.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | fthmon.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | fthmon.f | ⊢ ( 𝜑  →  𝐹 ( 𝐶  Faith  𝐷 ) 𝐺 ) | 
						
							| 4 |  | fthmon.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | fthmon.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | fthmon.r | ⊢ ( 𝜑  →  𝑅  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 7 |  | ffthiso.f | ⊢ ( 𝜑  →  𝐹 ( 𝐶  Full  𝐷 ) 𝐺 ) | 
						
							| 8 |  | ffthiso.s | ⊢ 𝐼  =  ( Iso ‘ 𝐶 ) | 
						
							| 9 |  | ffthiso.t | ⊢ 𝐽  =  ( Iso ‘ 𝐷 ) | 
						
							| 10 |  | fthfunc | ⊢ ( 𝐶  Faith  𝐷 )  ⊆  ( 𝐶  Func  𝐷 ) | 
						
							| 11 | 10 | ssbri | ⊢ ( 𝐹 ( 𝐶  Faith  𝐷 ) 𝐺  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  𝐹 ( 𝐶  Func  𝐷 ) 𝐺 ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 17 | 1 8 9 13 14 15 16 | funciso | ⊢ ( ( 𝜑  ∧  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( Inv ‘ 𝐶 )  =  ( Inv ‘ 𝐶 ) | 
						
							| 19 |  | df-br | ⊢ ( 𝐹 ( 𝐶  Func  𝐷 ) 𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 20 | 12 19 | sylib | ⊢ ( 𝜑  →  〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 ) ) | 
						
							| 21 |  | funcrcl | ⊢ ( 〈 𝐹 ,  𝐺 〉  ∈  ( 𝐶  Func  𝐷 )  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  ( 𝐶  ∈  Cat  ∧  𝐷  ∈  Cat ) ) | 
						
							| 23 | 22 | simpld | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 24 | 23 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝐶  ∈  Cat ) | 
						
							| 25 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 26 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 ) | 
						
							| 28 |  | eqid | ⊢ ( Inv ‘ 𝐷 )  =  ( Inv ‘ 𝐷 ) | 
						
							| 29 | 22 | simprd | ⊢ ( 𝜑  →  𝐷  ∈  Cat ) | 
						
							| 30 | 1 27 12 | funcf1 | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) | 
						
							| 31 | 30 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐷 ) ) | 
						
							| 32 | 30 5 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑌 )  ∈  ( Base ‘ 𝐷 ) ) | 
						
							| 33 | 27 28 29 31 32 9 | isoval | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) )  =  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 34 | 33 | eleq2d | ⊢ ( 𝜑  →  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) ) | 
						
							| 35 | 34 | biimpa | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 36 | 27 28 29 31 32 | invfun | ⊢ ( 𝜑  →  Fun  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  Fun  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 38 |  | funfvbrb | ⊢ ( Fun  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) )  →  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  dom  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) )  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) ) | 
						
							| 40 | 35 39 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) | 
						
							| 43 | 41 42 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) | 
						
							| 44 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝐹 ( 𝐶  Faith  𝐷 ) 𝐺 ) | 
						
							| 45 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑅  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 46 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) ) | 
						
							| 47 | 1 2 44 25 26 45 46 18 28 | fthinv | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  ( 𝑅 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝑓  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) ) | 
						
							| 48 | 43 47 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑅 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) 𝑓 ) | 
						
							| 49 | 1 18 24 25 26 8 48 | inviso1 | ⊢ ( ( ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  ∧  𝑓  ∈  ( 𝑌 𝐻 𝑋 ) )  ∧  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) )  →  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 50 |  | eqid | ⊢ ( Hom  ‘ 𝐷 )  =  ( Hom  ‘ 𝐷 ) | 
						
							| 51 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  𝐹 ( 𝐶  Full  𝐷 ) 𝐺 ) | 
						
							| 52 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 53 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 54 | 27 50 9 29 32 31 | isohom | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) )  ⊆  ( ( 𝐹 ‘ 𝑌 ) ( Hom  ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) )  ⊆  ( ( 𝐹 ‘ 𝑌 ) ( Hom  ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 56 | 27 28 29 31 32 9 | invf | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ⟶ ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 57 | 56 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  ∈  ( ( 𝐹 ‘ 𝑌 ) 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 58 | 55 57 | sseldd | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  ∈  ( ( 𝐹 ‘ 𝑌 ) ( Hom  ‘ 𝐷 ) ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 59 | 1 50 2 51 52 53 58 | fulli | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  ∃ 𝑓  ∈  ( 𝑌 𝐻 𝑋 ) ( ( ( 𝐹 ‘ 𝑋 ) ( Inv ‘ 𝐷 ) ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) )  =  ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑓 ) ) | 
						
							| 60 | 49 59 | r19.29a | ⊢ ( ( 𝜑  ∧  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) )  →  𝑅  ∈  ( 𝑋 𝐼 𝑌 ) ) | 
						
							| 61 | 17 60 | impbida | ⊢ ( 𝜑  →  ( 𝑅  ∈  ( 𝑋 𝐼 𝑌 )  ↔  ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 )  ∈  ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |