| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ancom | ⊢ ( ( 𝐵  ≤  𝐴  ∧  𝐴  ≤  𝐶 )  ↔  ( 𝐴  ≤  𝐶  ∧  𝐵  ≤  𝐴 ) ) | 
						
							| 2 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | zre | ⊢ ( 𝐶  ∈  ℤ  →  𝐶  ∈  ℝ ) | 
						
							| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  𝐶  ∈  ℝ ) | 
						
							| 6 | 3 5 | lenegd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( 𝐴  ≤  𝐶  ↔  - 𝐶  ≤  - 𝐴 ) ) | 
						
							| 7 |  | zre | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℝ ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  𝐵  ∈  ℝ ) | 
						
							| 9 | 8 3 | lenegd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( 𝐵  ≤  𝐴  ↔  - 𝐴  ≤  - 𝐵 ) ) | 
						
							| 10 | 6 9 | anbi12d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( ( 𝐴  ≤  𝐶  ∧  𝐵  ≤  𝐴 )  ↔  ( - 𝐶  ≤  - 𝐴  ∧  - 𝐴  ≤  - 𝐵 ) ) ) | 
						
							| 11 | 1 10 | bitrid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( ( 𝐵  ≤  𝐴  ∧  𝐴  ≤  𝐶 )  ↔  ( - 𝐶  ≤  - 𝐴  ∧  - 𝐴  ≤  - 𝐵 ) ) ) | 
						
							| 12 |  | elfz | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( 𝐴  ∈  ( 𝐵 ... 𝐶 )  ↔  ( 𝐵  ≤  𝐴  ∧  𝐴  ≤  𝐶 ) ) ) | 
						
							| 13 |  | znegcl | ⊢ ( 𝐴  ∈  ℤ  →  - 𝐴  ∈  ℤ ) | 
						
							| 14 |  | znegcl | ⊢ ( 𝐶  ∈  ℤ  →  - 𝐶  ∈  ℤ ) | 
						
							| 15 |  | znegcl | ⊢ ( 𝐵  ∈  ℤ  →  - 𝐵  ∈  ℤ ) | 
						
							| 16 |  | elfz | ⊢ ( ( - 𝐴  ∈  ℤ  ∧  - 𝐶  ∈  ℤ  ∧  - 𝐵  ∈  ℤ )  →  ( - 𝐴  ∈  ( - 𝐶 ... - 𝐵 )  ↔  ( - 𝐶  ≤  - 𝐴  ∧  - 𝐴  ≤  - 𝐵 ) ) ) | 
						
							| 17 | 13 14 15 16 | syl3an | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐶  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( - 𝐴  ∈  ( - 𝐶 ... - 𝐵 )  ↔  ( - 𝐶  ≤  - 𝐴  ∧  - 𝐴  ≤  - 𝐵 ) ) ) | 
						
							| 18 | 17 | 3com23 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( - 𝐴  ∈  ( - 𝐶 ... - 𝐵 )  ↔  ( - 𝐶  ≤  - 𝐴  ∧  - 𝐴  ≤  - 𝐵 ) ) ) | 
						
							| 19 | 11 12 18 | 3bitr4d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  →  ( 𝐴  ∈  ( 𝐵 ... 𝐶 )  ↔  - 𝐴  ∈  ( - 𝐶 ... - 𝐵 ) ) ) |