Metamath Proof Explorer


Theorem fzneg

Description: Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion fzneg ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ... 𝐶 ) ↔ - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ancom ( ( 𝐵𝐴𝐴𝐶 ) ↔ ( 𝐴𝐶𝐵𝐴 ) )
2 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
3 2 3ad2ant1 ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℝ )
4 zre ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ )
5 4 3ad2ant3 ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℝ )
6 3 5 lenegd ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴𝐶 ↔ - 𝐶 ≤ - 𝐴 ) )
7 zre ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ )
8 7 3ad2ant2 ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℝ )
9 8 3 lenegd ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵𝐴 ↔ - 𝐴 ≤ - 𝐵 ) )
10 6 9 anbi12d ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴𝐶𝐵𝐴 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) )
11 1 10 syl5bb ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐵𝐴𝐴𝐶 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) )
12 elfz ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ... 𝐶 ) ↔ ( 𝐵𝐴𝐴𝐶 ) ) )
13 znegcl ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ )
14 znegcl ( 𝐶 ∈ ℤ → - 𝐶 ∈ ℤ )
15 znegcl ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ )
16 elfz ( ( - 𝐴 ∈ ℤ ∧ - 𝐶 ∈ ℤ ∧ - 𝐵 ∈ ℤ ) → ( - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) )
17 13 14 15 16 syl3an ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) )
18 17 3com23 ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ↔ ( - 𝐶 ≤ - 𝐴 ∧ - 𝐴 ≤ - 𝐵 ) ) )
19 11 12 18 3bitr4d ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐵 ... 𝐶 ) ↔ - 𝐴 ∈ ( - 𝐶 ... - 𝐵 ) ) )