| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℤ ) | 
						
							| 4 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 2  ·  𝐴 )  ∈  ℤ ) | 
						
							| 5 | 1 3 4 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 2  ·  𝐴 )  ∈  ℤ ) | 
						
							| 6 |  | elfzelz | ⊢ ( 𝐵  ∈  ( 0 ... 𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 8 |  | congid | ⊢ ( ( ( 2  ·  𝐴 )  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐵 ) ) | 
						
							| 9 | 5 7 8 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐵 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝐵  =  𝐶 )  →  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐵 ) ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝐵  =  𝐶  →  ( 𝐵  −  𝐵 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝐵  =  𝐶 )  →  ( 𝐵  −  𝐵 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 13 | 10 12 | breqtrd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝐵  =  𝐶 )  →  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) ) | 
						
							| 14 | 13 | orcd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  𝐵  =  𝐶 )  →  ( ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 )  ∨  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) ) ) | 
						
							| 15 |  | elfzelz | ⊢ ( 𝐶  ∈  ( 0 ... 𝐴 )  →  𝐶  ∈  ℤ ) | 
						
							| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ℤ ) | 
						
							| 17 | 7 16 | zsubcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  𝐶 )  ∈  ℤ ) | 
						
							| 18 | 17 | zcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  𝐶 )  ∈  ℂ ) | 
						
							| 19 | 18 | abscld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( abs ‘ ( 𝐵  −  𝐶 ) )  ∈  ℝ ) | 
						
							| 20 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 22 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 23 |  | resubcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝐴  −  0 )  ∈  ℝ ) | 
						
							| 24 | 21 22 23 | sylancl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  0 )  ∈  ℝ ) | 
						
							| 25 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 26 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 27 | 25 21 26 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 28 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 29 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 30 | 24 | leidd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  0 )  ≤  ( 𝐴  −  0 ) ) | 
						
							| 31 |  | fzmaxdif | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝐴  ∈  ℤ  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 𝐴  −  0 )  ≤  ( 𝐴  −  0 ) )  →  ( abs ‘ ( 𝐵  −  𝐶 ) )  ≤  ( 𝐴  −  0 ) ) | 
						
							| 32 | 3 28 3 29 30 31 | syl221anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( abs ‘ ( 𝐵  −  𝐶 ) )  ≤  ( 𝐴  −  0 ) ) | 
						
							| 33 |  | nnrp | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ+ ) | 
						
							| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℝ+ ) | 
						
							| 35 | 21 34 | ltaddrpd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  <  ( 𝐴  +  𝐴 ) ) | 
						
							| 36 | 21 | recnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 37 | 36 | subid1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  0 )  =  𝐴 ) | 
						
							| 38 | 36 | 2timesd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 2  ·  𝐴 )  =  ( 𝐴  +  𝐴 ) ) | 
						
							| 39 | 35 37 38 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  0 )  <  ( 2  ·  𝐴 ) ) | 
						
							| 40 | 19 24 27 32 39 | lelttrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( abs ‘ ( 𝐵  −  𝐶 ) )  <  ( 2  ·  𝐴 ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  ( abs ‘ ( 𝐵  −  𝐶 ) )  <  ( 2  ·  𝐴 ) ) | 
						
							| 42 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 43 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  𝐴  ∈  ℕ ) | 
						
							| 44 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 2  ·  𝐴 )  ∈  ℕ ) | 
						
							| 45 | 42 43 44 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  ( 2  ·  𝐴 )  ∈  ℕ ) | 
						
							| 46 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  𝐵  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 47 | 46 | elfzelzd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  𝐵  ∈  ℤ ) | 
						
							| 48 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  𝐶  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 49 | 48 | elfzelzd | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  𝐶  ∈  ℤ ) | 
						
							| 50 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) ) | 
						
							| 51 |  | congabseq | ⊢ ( ( ( ( 2  ·  𝐴 )  ∈  ℕ  ∧  𝐵  ∈  ℤ  ∧  𝐶  ∈  ℤ )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  ( ( abs ‘ ( 𝐵  −  𝐶 ) )  <  ( 2  ·  𝐴 )  ↔  𝐵  =  𝐶 ) ) | 
						
							| 52 | 45 47 49 50 51 | syl31anc | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  ( ( abs ‘ ( 𝐵  −  𝐶 ) )  <  ( 2  ·  𝐴 )  ↔  𝐵  =  𝐶 ) ) | 
						
							| 53 | 41 52 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 ) )  →  𝐵  =  𝐶 ) | 
						
							| 54 |  | simpll2 | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐵  ∈  ( 0 ... 𝐴 ) ) | 
						
							| 55 |  | elfzle1 | ⊢ ( 𝐵  ∈  ( 0 ... 𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  0  ≤  𝐵 ) | 
						
							| 57 | 7 | zred | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 58 | 16 | zred | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 59 | 58 | renegcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  - 𝐶  ∈  ℝ ) | 
						
							| 60 | 57 59 | resubcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  - 𝐶 )  ∈  ℝ ) | 
						
							| 61 | 60 | recnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  - 𝐶 )  ∈  ℂ ) | 
						
							| 62 | 61 | abscld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( abs ‘ ( 𝐵  −  - 𝐶 ) )  ∈  ℝ ) | 
						
							| 63 | 62 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( abs ‘ ( 𝐵  −  - 𝐶 ) )  ∈  ℝ ) | 
						
							| 64 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 65 |  | resubcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 66 | 21 64 65 | sylancl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 67 | 66 | renegcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  - ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 68 | 21 67 | resubcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  - ( 𝐴  −  1 ) )  ∈  ℝ ) | 
						
							| 69 | 68 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 𝐴  −  - ( 𝐴  −  1 ) )  ∈  ℝ ) | 
						
							| 70 | 27 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 71 | 7 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐵  ∈  ℤ ) | 
						
							| 72 | 71 | zcnd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 73 | 16 | znegcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  - 𝐶  ∈  ℤ ) | 
						
							| 74 | 73 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  - 𝐶  ∈  ℤ ) | 
						
							| 75 | 74 | zcnd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  - 𝐶  ∈  ℂ ) | 
						
							| 76 | 72 75 | abssubd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( abs ‘ ( 𝐵  −  - 𝐶 ) )  =  ( abs ‘ ( - 𝐶  −  𝐵 ) ) ) | 
						
							| 77 |  | 0zd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  0  ∈  ℤ ) | 
						
							| 78 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) ) | 
						
							| 79 |  | 0zd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ∈  ℤ ) | 
						
							| 80 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 81 |  | zsubcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( 𝐴  −  1 )  ∈  ℤ ) | 
						
							| 82 | 3 80 81 | sylancl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  1 )  ∈  ℤ ) | 
						
							| 83 |  | fzneg | ⊢ ( ( 𝐶  ∈  ℤ  ∧  0  ∈  ℤ  ∧  ( 𝐴  −  1 )  ∈  ℤ )  →  ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  ↔  - 𝐶  ∈  ( - ( 𝐴  −  1 ) ... - 0 ) ) ) | 
						
							| 84 | 16 79 82 83 | syl3anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  ↔  - 𝐶  ∈  ( - ( 𝐴  −  1 ) ... - 0 ) ) ) | 
						
							| 85 | 84 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  ↔  - 𝐶  ∈  ( - ( 𝐴  −  1 ) ... - 0 ) ) ) | 
						
							| 86 | 78 85 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  - 𝐶  ∈  ( - ( 𝐴  −  1 ) ... - 0 ) ) | 
						
							| 87 |  | neg0 | ⊢ - 0  =  0 | 
						
							| 88 | 87 | a1i | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  - 0  =  0 ) | 
						
							| 89 | 88 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( - ( 𝐴  −  1 ) ... - 0 )  =  ( - ( 𝐴  −  1 ) ... 0 ) ) | 
						
							| 90 | 86 89 | eleqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  - 𝐶  ∈  ( - ( 𝐴  −  1 ) ... 0 ) ) | 
						
							| 91 | 3 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐴  ∈  ℤ ) | 
						
							| 92 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℕ ) | 
						
							| 93 | 42 92 44 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 2  ·  𝐴 )  ∈  ℕ ) | 
						
							| 94 |  | nnm1nn0 | ⊢ ( ( 2  ·  𝐴 )  ∈  ℕ  →  ( ( 2  ·  𝐴 )  −  1 )  ∈  ℕ0 ) | 
						
							| 95 | 93 94 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 2  ·  𝐴 )  −  1 )  ∈  ℕ0 ) | 
						
							| 96 | 95 | nn0ge0d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  0  ≤  ( ( 2  ·  𝐴 )  −  1 ) ) | 
						
							| 97 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 98 | 97 | a1i | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 0  −  0 )  =  0 ) | 
						
							| 99 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  1  ∈  ℂ ) | 
						
							| 100 | 36 36 99 | addsubassd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝐴  +  𝐴 )  −  1 )  =  ( 𝐴  +  ( 𝐴  −  1 ) ) ) | 
						
							| 101 | 38 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 2  ·  𝐴 )  −  1 )  =  ( ( 𝐴  +  𝐴 )  −  1 ) ) | 
						
							| 102 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 103 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐴  −  1 )  ∈  ℂ ) | 
						
							| 104 | 36 102 103 | sylancl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  1 )  ∈  ℂ ) | 
						
							| 105 | 36 104 | subnegd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  - ( 𝐴  −  1 ) )  =  ( 𝐴  +  ( 𝐴  −  1 ) ) ) | 
						
							| 106 | 100 101 105 | 3eqtr4rd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  - ( 𝐴  −  1 ) )  =  ( ( 2  ·  𝐴 )  −  1 ) ) | 
						
							| 107 | 96 98 106 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 0  −  0 )  ≤  ( 𝐴  −  - ( 𝐴  −  1 ) ) ) | 
						
							| 108 | 107 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 0  −  0 )  ≤  ( 𝐴  −  - ( 𝐴  −  1 ) ) ) | 
						
							| 109 |  | fzmaxdif | ⊢ ( ( ( 0  ∈  ℤ  ∧  - 𝐶  ∈  ( - ( 𝐴  −  1 ) ... 0 ) )  ∧  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ( 0 ... 𝐴 ) )  ∧  ( 0  −  0 )  ≤  ( 𝐴  −  - ( 𝐴  −  1 ) ) )  →  ( abs ‘ ( - 𝐶  −  𝐵 ) )  ≤  ( 𝐴  −  - ( 𝐴  −  1 ) ) ) | 
						
							| 110 | 77 90 91 54 108 109 | syl221anc | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( abs ‘ ( - 𝐶  −  𝐵 ) )  ≤  ( 𝐴  −  - ( 𝐴  −  1 ) ) ) | 
						
							| 111 | 76 110 | eqbrtrd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( abs ‘ ( 𝐵  −  - 𝐶 ) )  ≤  ( 𝐴  −  - ( 𝐴  −  1 ) ) ) | 
						
							| 112 | 27 | ltm1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 2  ·  𝐴 )  −  1 )  <  ( 2  ·  𝐴 ) ) | 
						
							| 113 | 106 112 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  −  - ( 𝐴  −  1 ) )  <  ( 2  ·  𝐴 ) ) | 
						
							| 114 | 113 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 𝐴  −  - ( 𝐴  −  1 ) )  <  ( 2  ·  𝐴 ) ) | 
						
							| 115 | 63 69 70 111 114 | lelttrd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( abs ‘ ( 𝐵  −  - 𝐶 ) )  <  ( 2  ·  𝐴 ) ) | 
						
							| 116 | 93 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 2  ·  𝐴 )  ∈  ℕ ) | 
						
							| 117 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) ) | 
						
							| 118 |  | congabseq | ⊢ ( ( ( ( 2  ·  𝐴 )  ∈  ℕ  ∧  𝐵  ∈  ℤ  ∧  - 𝐶  ∈  ℤ )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  →  ( ( abs ‘ ( 𝐵  −  - 𝐶 ) )  <  ( 2  ·  𝐴 )  ↔  𝐵  =  - 𝐶 ) ) | 
						
							| 119 | 116 71 74 117 118 | syl31anc | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( ( abs ‘ ( 𝐵  −  - 𝐶 ) )  <  ( 2  ·  𝐴 )  ↔  𝐵  =  - 𝐶 ) ) | 
						
							| 120 | 115 119 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐵  =  - 𝐶 ) | 
						
							| 121 | 56 120 | breqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  0  ≤  - 𝐶 ) | 
						
							| 122 |  | elfzelz | ⊢ ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  →  𝐶  ∈  ℤ ) | 
						
							| 123 | 122 | zred | ⊢ ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 124 | 123 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 125 | 124 | le0neg1d | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 𝐶  ≤  0  ↔  0  ≤  - 𝐶 ) ) | 
						
							| 126 | 121 125 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐶  ≤  0 ) | 
						
							| 127 |  | elfzle1 | ⊢ ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  →  0  ≤  𝐶 ) | 
						
							| 128 | 127 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  0  ≤  𝐶 ) | 
						
							| 129 |  | letri3 | ⊢ ( ( 𝐶  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝐶  =  0  ↔  ( 𝐶  ≤  0  ∧  0  ≤  𝐶 ) ) ) | 
						
							| 130 | 124 22 129 | sylancl | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  ( 𝐶  =  0  ↔  ( 𝐶  ≤  0  ∧  0  ≤  𝐶 ) ) ) | 
						
							| 131 | 126 128 130 | mpbir2and | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐶  =  0 ) | 
						
							| 132 | 131 | negeqd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  - 𝐶  =  - 0 ) | 
						
							| 133 | 132 88 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  - 𝐶  =  0 ) | 
						
							| 134 | 133 120 131 | 3eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) ) )  →  𝐵  =  𝐶 ) | 
						
							| 135 |  | oveq2 | ⊢ ( 𝐶  =  𝐴  →  ( 𝐵  −  𝐶 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 𝐵  −  𝐶 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 137 | 136 | fveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( abs ‘ ( 𝐵  −  𝐶 ) )  =  ( abs ‘ ( 𝐵  −  𝐴 ) ) ) | 
						
							| 138 | 40 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( abs ‘ ( 𝐵  −  𝐶 ) )  <  ( 2  ·  𝐴 ) ) | 
						
							| 139 | 137 138 | eqbrtrrd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( abs ‘ ( 𝐵  −  𝐴 ) )  <  ( 2  ·  𝐴 ) ) | 
						
							| 140 | 93 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 2  ·  𝐴 )  ∈  ℕ ) | 
						
							| 141 | 7 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 142 | 3 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  𝐴  ∈  ℤ ) | 
						
							| 143 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) ) | 
						
							| 144 | 7 | zcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 145 | 36 36 144 | ppncand | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝐴  +  𝐴 )  +  ( 𝐵  −  𝐴 ) )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 146 | 36 144 | addcomd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐴  +  𝐵 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 147 | 145 146 | eqtrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 𝐴  +  𝐴 )  +  ( 𝐵  −  𝐴 ) )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 148 | 147 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( ( 𝐴  +  𝐴 )  +  ( 𝐵  −  𝐴 ) )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 149 |  | oveq2 | ⊢ ( 𝐶  =  𝐴  →  ( 𝐵  +  𝐶 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 150 | 149 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 𝐵  +  𝐶 )  =  ( 𝐵  +  𝐴 ) ) | 
						
							| 151 | 148 150 | eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( ( 𝐴  +  𝐴 )  +  ( 𝐵  −  𝐴 ) )  =  ( 𝐵  +  𝐶 ) ) | 
						
							| 152 | 38 | oveq1d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( ( 2  ·  𝐴 )  +  ( 𝐵  −  𝐴 ) )  =  ( ( 𝐴  +  𝐴 )  +  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 153 | 152 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( ( 2  ·  𝐴 )  +  ( 𝐵  −  𝐴 ) )  =  ( ( 𝐴  +  𝐴 )  +  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 154 | 16 | zcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 155 | 144 154 | subnegd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  - 𝐶 )  =  ( 𝐵  +  𝐶 ) ) | 
						
							| 156 | 155 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 𝐵  −  - 𝐶 )  =  ( 𝐵  +  𝐶 ) ) | 
						
							| 157 | 151 153 156 | 3eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( ( 2  ·  𝐴 )  +  ( 𝐵  −  𝐴 ) )  =  ( 𝐵  −  - 𝐶 ) ) | 
						
							| 158 | 143 157 | breqtrrd | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 2  ·  𝐴 )  ∥  ( ( 2  ·  𝐴 )  +  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 159 | 5 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 2  ·  𝐴 )  ∈  ℤ ) | 
						
							| 160 | 7 3 | zsubcld | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  −  𝐴 )  ∈  ℤ ) | 
						
							| 161 | 160 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 𝐵  −  𝐴 )  ∈  ℤ ) | 
						
							| 162 |  | dvdsadd | ⊢ ( ( ( 2  ·  𝐴 )  ∈  ℤ  ∧  ( 𝐵  −  𝐴 )  ∈  ℤ )  →  ( ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐴 )  ↔  ( 2  ·  𝐴 )  ∥  ( ( 2  ·  𝐴 )  +  ( 𝐵  −  𝐴 ) ) ) ) | 
						
							| 163 | 159 161 162 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐴 )  ↔  ( 2  ·  𝐴 )  ∥  ( ( 2  ·  𝐴 )  +  ( 𝐵  −  𝐴 ) ) ) ) | 
						
							| 164 | 158 163 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐴 ) ) | 
						
							| 165 |  | congabseq | ⊢ ( ( ( ( 2  ·  𝐴 )  ∈  ℕ  ∧  𝐵  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐴 ) )  →  ( ( abs ‘ ( 𝐵  −  𝐴 ) )  <  ( 2  ·  𝐴 )  ↔  𝐵  =  𝐴 ) ) | 
						
							| 166 | 140 141 142 164 165 | syl31anc | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  ( ( abs ‘ ( 𝐵  −  𝐴 ) )  <  ( 2  ·  𝐴 )  ↔  𝐵  =  𝐴 ) ) | 
						
							| 167 | 139 166 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  𝐵  =  𝐴 ) | 
						
							| 168 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  𝐶  =  𝐴 ) | 
						
							| 169 | 167 168 | eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  ∧  𝐶  =  𝐴 )  →  𝐵  =  𝐶 ) | 
						
							| 170 |  | nnnn0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℕ0 ) | 
						
							| 171 | 170 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 172 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 173 | 171 172 | eleqtrdi | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  𝐴  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 174 |  | fzm1 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝐶  ∈  ( 0 ... 𝐴 )  ↔  ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  ∨  𝐶  =  𝐴 ) ) ) | 
						
							| 175 | 174 | biimpa | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 0 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  ∨  𝐶  =  𝐴 ) ) | 
						
							| 176 | 173 29 175 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  ∨  𝐶  =  𝐴 ) ) | 
						
							| 177 | 176 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  →  ( 𝐶  ∈  ( 0 ... ( 𝐴  −  1 ) )  ∨  𝐶  =  𝐴 ) ) | 
						
							| 178 | 134 169 177 | mpjaodan | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) )  →  𝐵  =  𝐶 ) | 
						
							| 179 | 53 178 | jaodan | ⊢ ( ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  ∧  ( ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 )  ∨  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) ) )  →  𝐵  =  𝐶 ) | 
						
							| 180 | 14 179 | impbida | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ( 0 ... 𝐴 )  ∧  𝐶  ∈  ( 0 ... 𝐴 ) )  →  ( 𝐵  =  𝐶  ↔  ( ( 2  ·  𝐴 )  ∥  ( 𝐵  −  𝐶 )  ∨  ( 2  ·  𝐴 )  ∥  ( 𝐵  −  - 𝐶 ) ) ) ) |