Metamath Proof Explorer


Theorem acongeq

Description: Two numbers in the fundamental domain are alternating-congruent iff they are equal. TODO: could be used to shorten jm2.26 . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion acongeq AB0AC0AB=C2ABC2ABC

Proof

Step Hyp Ref Expression
1 2z 2
2 nnz AA
3 2 3ad2ant1 AB0AC0AA
4 zmulcl 2A2A
5 1 3 4 sylancr AB0AC0A2A
6 elfzelz B0AB
7 6 3ad2ant2 AB0AC0AB
8 congid 2AB2ABB
9 5 7 8 syl2anc AB0AC0A2ABB
10 9 adantr AB0AC0AB=C2ABB
11 oveq2 B=CBB=BC
12 11 adantl AB0AC0AB=CBB=BC
13 10 12 breqtrd AB0AC0AB=C2ABC
14 13 orcd AB0AC0AB=C2ABC2ABC
15 elfzelz C0AC
16 15 3ad2ant3 AB0AC0AC
17 7 16 zsubcld AB0AC0ABC
18 17 zcnd AB0AC0ABC
19 18 abscld AB0AC0ABC
20 nnre AA
21 20 3ad2ant1 AB0AC0AA
22 0re 0
23 resubcl A0A0
24 21 22 23 sylancl AB0AC0AA0
25 2re 2
26 remulcl 2A2A
27 25 21 26 sylancr AB0AC0A2A
28 simp2 AB0AC0AB0A
29 simp3 AB0AC0AC0A
30 24 leidd AB0AC0AA0A0
31 fzmaxdif AB0AAC0AA0A0BCA0
32 3 28 3 29 30 31 syl221anc AB0AC0ABCA0
33 nnrp AA+
34 33 3ad2ant1 AB0AC0AA+
35 21 34 ltaddrpd AB0AC0AA<A+A
36 21 recnd AB0AC0AA
37 36 subid1d AB0AC0AA0=A
38 36 2timesd AB0AC0A2A=A+A
39 35 37 38 3brtr4d AB0AC0AA0<2A
40 19 24 27 32 39 lelttrd AB0AC0ABC<2A
41 40 adantr AB0AC0A2ABCBC<2A
42 2nn 2
43 simpl1 AB0AC0A2ABCA
44 nnmulcl 2A2A
45 42 43 44 sylancr AB0AC0A2ABC2A
46 simpl2 AB0AC0A2ABCB0A
47 46 elfzelzd AB0AC0A2ABCB
48 simpl3 AB0AC0A2ABCC0A
49 48 elfzelzd AB0AC0A2ABCC
50 simpr AB0AC0A2ABC2ABC
51 congabseq 2ABC2ABCBC<2AB=C
52 45 47 49 50 51 syl31anc AB0AC0A2ABCBC<2AB=C
53 41 52 mpbid AB0AC0A2ABCB=C
54 simpll2 AB0AC0A2ABCC0A1B0A
55 elfzle1 B0A0B
56 54 55 syl AB0AC0A2ABCC0A10B
57 7 zred AB0AC0AB
58 16 zred AB0AC0AC
59 58 renegcld AB0AC0AC
60 57 59 resubcld AB0AC0ABC
61 60 recnd AB0AC0ABC
62 61 abscld AB0AC0ABC
63 62 ad2antrr AB0AC0A2ABCC0A1BC
64 1re 1
65 resubcl A1A1
66 21 64 65 sylancl AB0AC0AA1
67 66 renegcld AB0AC0AA1
68 21 67 resubcld AB0AC0AAA1
69 68 ad2antrr AB0AC0A2ABCC0A1AA1
70 27 ad2antrr AB0AC0A2ABCC0A12A
71 7 ad2antrr AB0AC0A2ABCC0A1B
72 71 zcnd AB0AC0A2ABCC0A1B
73 16 znegcld AB0AC0AC
74 73 ad2antrr AB0AC0A2ABCC0A1C
75 74 zcnd AB0AC0A2ABCC0A1C
76 72 75 abssubd AB0AC0A2ABCC0A1BC=-C-B
77 0zd AB0AC0A2ABCC0A10
78 simpr AB0AC0A2ABCC0A1C0A1
79 0zd AB0AC0A0
80 1z 1
81 zsubcl A1A1
82 3 80 81 sylancl AB0AC0AA1
83 fzneg C0A1C0A1CA10
84 16 79 82 83 syl3anc AB0AC0AC0A1CA10
85 84 ad2antrr AB0AC0A2ABCC0A1C0A1CA10
86 78 85 mpbid AB0AC0A2ABCC0A1CA10
87 neg0 0=0
88 87 a1i AB0AC0A2ABCC0A10=0
89 88 oveq2d AB0AC0A2ABCC0A1A10=A10
90 86 89 eleqtrd AB0AC0A2ABCC0A1CA10
91 3 ad2antrr AB0AC0A2ABCC0A1A
92 simp1 AB0AC0AA
93 42 92 44 sylancr AB0AC0A2A
94 nnm1nn0 2A2A10
95 93 94 syl AB0AC0A2A10
96 95 nn0ge0d AB0AC0A02A1
97 0m0e0 00=0
98 97 a1i AB0AC0A00=0
99 1cnd AB0AC0A1
100 36 36 99 addsubassd AB0AC0AA+A-1=A+A-1
101 38 oveq1d AB0AC0A2A1=A+A-1
102 ax-1cn 1
103 subcl A1A1
104 36 102 103 sylancl AB0AC0AA1
105 36 104 subnegd AB0AC0AAA1=A+A-1
106 100 101 105 3eqtr4rd AB0AC0AAA1=2A1
107 96 98 106 3brtr4d AB0AC0A00AA1
108 107 ad2antrr AB0AC0A2ABCC0A100AA1
109 fzmaxdif 0CA10AB0A00AA1-C-BAA1
110 77 90 91 54 108 109 syl221anc AB0AC0A2ABCC0A1-C-BAA1
111 76 110 eqbrtrd AB0AC0A2ABCC0A1BCAA1
112 27 ltm1d AB0AC0A2A1<2A
113 106 112 eqbrtrd AB0AC0AAA1<2A
114 113 ad2antrr AB0AC0A2ABCC0A1AA1<2A
115 63 69 70 111 114 lelttrd AB0AC0A2ABCC0A1BC<2A
116 93 ad2antrr AB0AC0A2ABCC0A12A
117 simplr AB0AC0A2ABCC0A12ABC
118 congabseq 2ABC2ABCBC<2AB=C
119 116 71 74 117 118 syl31anc AB0AC0A2ABCC0A1BC<2AB=C
120 115 119 mpbid AB0AC0A2ABCC0A1B=C
121 56 120 breqtrd AB0AC0A2ABCC0A10C
122 elfzelz C0A1C
123 122 zred C0A1C
124 123 adantl AB0AC0A2ABCC0A1C
125 124 le0neg1d AB0AC0A2ABCC0A1C00C
126 121 125 mpbird AB0AC0A2ABCC0A1C0
127 elfzle1 C0A10C
128 127 adantl AB0AC0A2ABCC0A10C
129 letri3 C0C=0C00C
130 124 22 129 sylancl AB0AC0A2ABCC0A1C=0C00C
131 126 128 130 mpbir2and AB0AC0A2ABCC0A1C=0
132 131 negeqd AB0AC0A2ABCC0A1C=0
133 132 88 eqtrd AB0AC0A2ABCC0A1C=0
134 133 120 131 3eqtr4d AB0AC0A2ABCC0A1B=C
135 oveq2 C=ABC=BA
136 135 adantl AB0AC0A2ABCC=ABC=BA
137 136 fveq2d AB0AC0A2ABCC=ABC=BA
138 40 ad2antrr AB0AC0A2ABCC=ABC<2A
139 137 138 eqbrtrrd AB0AC0A2ABCC=ABA<2A
140 93 ad2antrr AB0AC0A2ABCC=A2A
141 7 ad2antrr AB0AC0A2ABCC=AB
142 3 ad2antrr AB0AC0A2ABCC=AA
143 simplr AB0AC0A2ABCC=A2ABC
144 7 zcnd AB0AC0AB
145 36 36 144 ppncand AB0AC0AA+A+BA=A+B
146 36 144 addcomd AB0AC0AA+B=B+A
147 145 146 eqtrd AB0AC0AA+A+BA=B+A
148 147 ad2antrr AB0AC0A2ABCC=AA+A+BA=B+A
149 oveq2 C=AB+C=B+A
150 149 adantl AB0AC0A2ABCC=AB+C=B+A
151 148 150 eqtr4d AB0AC0A2ABCC=AA+A+BA=B+C
152 38 oveq1d AB0AC0A2A+B-A=A+A+BA
153 152 ad2antrr AB0AC0A2ABCC=A2A+B-A=A+A+BA
154 16 zcnd AB0AC0AC
155 144 154 subnegd AB0AC0ABC=B+C
156 155 ad2antrr AB0AC0A2ABCC=ABC=B+C
157 151 153 156 3eqtr4d AB0AC0A2ABCC=A2A+B-A=BC
158 143 157 breqtrrd AB0AC0A2ABCC=A2A2A+B-A
159 5 ad2antrr AB0AC0A2ABCC=A2A
160 7 3 zsubcld AB0AC0ABA
161 160 ad2antrr AB0AC0A2ABCC=ABA
162 dvdsadd 2ABA2ABA2A2A+B-A
163 159 161 162 syl2anc AB0AC0A2ABCC=A2ABA2A2A+B-A
164 158 163 mpbird AB0AC0A2ABCC=A2ABA
165 congabseq 2ABA2ABABA<2AB=A
166 140 141 142 164 165 syl31anc AB0AC0A2ABCC=ABA<2AB=A
167 139 166 mpbid AB0AC0A2ABCC=AB=A
168 simpr AB0AC0A2ABCC=AC=A
169 167 168 eqtr4d AB0AC0A2ABCC=AB=C
170 nnnn0 AA0
171 170 3ad2ant1 AB0AC0AA0
172 nn0uz 0=0
173 171 172 eleqtrdi AB0AC0AA0
174 fzm1 A0C0AC0A1C=A
175 174 biimpa A0C0AC0A1C=A
176 173 29 175 syl2anc AB0AC0AC0A1C=A
177 176 adantr AB0AC0A2ABCC0A1C=A
178 134 169 177 mpjaodan AB0AC0A2ABCB=C
179 53 178 jaodan AB0AC0A2ABC2ABCB=C
180 14 179 impbida AB0AC0AB=C2ABC2ABC