| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 |  | nnz |  |-  ( A e. NN -> A e. ZZ ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. ZZ ) | 
						
							| 4 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ A e. ZZ ) -> ( 2 x. A ) e. ZZ ) | 
						
							| 5 | 1 3 4 | sylancr |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) e. ZZ ) | 
						
							| 6 |  | elfzelz |  |-  ( B e. ( 0 ... A ) -> B e. ZZ ) | 
						
							| 7 | 6 | 3ad2ant2 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> B e. ZZ ) | 
						
							| 8 |  | congid |  |-  ( ( ( 2 x. A ) e. ZZ /\ B e. ZZ ) -> ( 2 x. A ) || ( B - B ) ) | 
						
							| 9 | 5 7 8 | syl2anc |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) || ( B - B ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ B = C ) -> ( 2 x. A ) || ( B - B ) ) | 
						
							| 11 |  | oveq2 |  |-  ( B = C -> ( B - B ) = ( B - C ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ B = C ) -> ( B - B ) = ( B - C ) ) | 
						
							| 13 | 10 12 | breqtrd |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ B = C ) -> ( 2 x. A ) || ( B - C ) ) | 
						
							| 14 | 13 | orcd |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ B = C ) -> ( ( 2 x. A ) || ( B - C ) \/ ( 2 x. A ) || ( B - -u C ) ) ) | 
						
							| 15 |  | elfzelz |  |-  ( C e. ( 0 ... A ) -> C e. ZZ ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> C e. ZZ ) | 
						
							| 17 | 7 16 | zsubcld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - C ) e. ZZ ) | 
						
							| 18 | 17 | zcnd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - C ) e. CC ) | 
						
							| 19 | 18 | abscld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( abs ` ( B - C ) ) e. RR ) | 
						
							| 20 |  | nnre |  |-  ( A e. NN -> A e. RR ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. RR ) | 
						
							| 22 |  | 0re |  |-  0 e. RR | 
						
							| 23 |  | resubcl |  |-  ( ( A e. RR /\ 0 e. RR ) -> ( A - 0 ) e. RR ) | 
						
							| 24 | 21 22 23 | sylancl |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 0 ) e. RR ) | 
						
							| 25 |  | 2re |  |-  2 e. RR | 
						
							| 26 |  | remulcl |  |-  ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) | 
						
							| 27 | 25 21 26 | sylancr |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) e. RR ) | 
						
							| 28 |  | simp2 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> B e. ( 0 ... A ) ) | 
						
							| 29 |  | simp3 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> C e. ( 0 ... A ) ) | 
						
							| 30 | 24 | leidd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 0 ) <_ ( A - 0 ) ) | 
						
							| 31 |  | fzmaxdif |  |-  ( ( ( A e. ZZ /\ B e. ( 0 ... A ) ) /\ ( A e. ZZ /\ C e. ( 0 ... A ) ) /\ ( A - 0 ) <_ ( A - 0 ) ) -> ( abs ` ( B - C ) ) <_ ( A - 0 ) ) | 
						
							| 32 | 3 28 3 29 30 31 | syl221anc |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( abs ` ( B - C ) ) <_ ( A - 0 ) ) | 
						
							| 33 |  | nnrp |  |-  ( A e. NN -> A e. RR+ ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. RR+ ) | 
						
							| 35 | 21 34 | ltaddrpd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A < ( A + A ) ) | 
						
							| 36 | 21 | recnd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. CC ) | 
						
							| 37 | 36 | subid1d |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 0 ) = A ) | 
						
							| 38 | 36 | 2timesd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) = ( A + A ) ) | 
						
							| 39 | 35 37 38 | 3brtr4d |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 0 ) < ( 2 x. A ) ) | 
						
							| 40 | 19 24 27 32 39 | lelttrd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( abs ` ( B - C ) ) < ( 2 x. A ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> ( abs ` ( B - C ) ) < ( 2 x. A ) ) | 
						
							| 42 |  | 2nn |  |-  2 e. NN | 
						
							| 43 |  | simpl1 |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> A e. NN ) | 
						
							| 44 |  | nnmulcl |  |-  ( ( 2 e. NN /\ A e. NN ) -> ( 2 x. A ) e. NN ) | 
						
							| 45 | 42 43 44 | sylancr |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> ( 2 x. A ) e. NN ) | 
						
							| 46 |  | simpl2 |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> B e. ( 0 ... A ) ) | 
						
							| 47 | 46 | elfzelzd |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> B e. ZZ ) | 
						
							| 48 |  | simpl3 |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> C e. ( 0 ... A ) ) | 
						
							| 49 | 48 | elfzelzd |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> C e. ZZ ) | 
						
							| 50 |  | simpr |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> ( 2 x. A ) || ( B - C ) ) | 
						
							| 51 |  | congabseq |  |-  ( ( ( ( 2 x. A ) e. NN /\ B e. ZZ /\ C e. ZZ ) /\ ( 2 x. A ) || ( B - C ) ) -> ( ( abs ` ( B - C ) ) < ( 2 x. A ) <-> B = C ) ) | 
						
							| 52 | 45 47 49 50 51 | syl31anc |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> ( ( abs ` ( B - C ) ) < ( 2 x. A ) <-> B = C ) ) | 
						
							| 53 | 41 52 | mpbid |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - C ) ) -> B = C ) | 
						
							| 54 |  | simpll2 |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B e. ( 0 ... A ) ) | 
						
							| 55 |  | elfzle1 |  |-  ( B e. ( 0 ... A ) -> 0 <_ B ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> 0 <_ B ) | 
						
							| 57 | 7 | zred |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> B e. RR ) | 
						
							| 58 | 16 | zred |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> C e. RR ) | 
						
							| 59 | 58 | renegcld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> -u C e. RR ) | 
						
							| 60 | 57 59 | resubcld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - -u C ) e. RR ) | 
						
							| 61 | 60 | recnd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - -u C ) e. CC ) | 
						
							| 62 | 61 | abscld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( abs ` ( B - -u C ) ) e. RR ) | 
						
							| 63 | 62 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( B - -u C ) ) e. RR ) | 
						
							| 64 |  | 1re |  |-  1 e. RR | 
						
							| 65 |  | resubcl |  |-  ( ( A e. RR /\ 1 e. RR ) -> ( A - 1 ) e. RR ) | 
						
							| 66 | 21 64 65 | sylancl |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 1 ) e. RR ) | 
						
							| 67 | 66 | renegcld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> -u ( A - 1 ) e. RR ) | 
						
							| 68 | 21 67 | resubcld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - -u ( A - 1 ) ) e. RR ) | 
						
							| 69 | 68 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( A - -u ( A - 1 ) ) e. RR ) | 
						
							| 70 | 27 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( 2 x. A ) e. RR ) | 
						
							| 71 | 7 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B e. ZZ ) | 
						
							| 72 | 71 | zcnd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B e. CC ) | 
						
							| 73 | 16 | znegcld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> -u C e. ZZ ) | 
						
							| 74 | 73 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C e. ZZ ) | 
						
							| 75 | 74 | zcnd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C e. CC ) | 
						
							| 76 | 72 75 | abssubd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( B - -u C ) ) = ( abs ` ( -u C - B ) ) ) | 
						
							| 77 |  | 0zd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> 0 e. ZZ ) | 
						
							| 78 |  | simpr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> C e. ( 0 ... ( A - 1 ) ) ) | 
						
							| 79 |  | 0zd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> 0 e. ZZ ) | 
						
							| 80 |  | 1z |  |-  1 e. ZZ | 
						
							| 81 |  | zsubcl |  |-  ( ( A e. ZZ /\ 1 e. ZZ ) -> ( A - 1 ) e. ZZ ) | 
						
							| 82 | 3 80 81 | sylancl |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 1 ) e. ZZ ) | 
						
							| 83 |  | fzneg |  |-  ( ( C e. ZZ /\ 0 e. ZZ /\ ( A - 1 ) e. ZZ ) -> ( C e. ( 0 ... ( A - 1 ) ) <-> -u C e. ( -u ( A - 1 ) ... -u 0 ) ) ) | 
						
							| 84 | 16 79 82 83 | syl3anc |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( C e. ( 0 ... ( A - 1 ) ) <-> -u C e. ( -u ( A - 1 ) ... -u 0 ) ) ) | 
						
							| 85 | 84 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( C e. ( 0 ... ( A - 1 ) ) <-> -u C e. ( -u ( A - 1 ) ... -u 0 ) ) ) | 
						
							| 86 | 78 85 | mpbid |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C e. ( -u ( A - 1 ) ... -u 0 ) ) | 
						
							| 87 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 88 | 87 | a1i |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u 0 = 0 ) | 
						
							| 89 | 88 | oveq2d |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( -u ( A - 1 ) ... -u 0 ) = ( -u ( A - 1 ) ... 0 ) ) | 
						
							| 90 | 86 89 | eleqtrd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C e. ( -u ( A - 1 ) ... 0 ) ) | 
						
							| 91 | 3 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> A e. ZZ ) | 
						
							| 92 |  | simp1 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. NN ) | 
						
							| 93 | 42 92 44 | sylancr |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 2 x. A ) e. NN ) | 
						
							| 94 |  | nnm1nn0 |  |-  ( ( 2 x. A ) e. NN -> ( ( 2 x. A ) - 1 ) e. NN0 ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( 2 x. A ) - 1 ) e. NN0 ) | 
						
							| 96 | 95 | nn0ge0d |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> 0 <_ ( ( 2 x. A ) - 1 ) ) | 
						
							| 97 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 98 | 97 | a1i |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 0 - 0 ) = 0 ) | 
						
							| 99 |  | 1cnd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> 1 e. CC ) | 
						
							| 100 | 36 36 99 | addsubassd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( A + A ) - 1 ) = ( A + ( A - 1 ) ) ) | 
						
							| 101 | 38 | oveq1d |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( 2 x. A ) - 1 ) = ( ( A + A ) - 1 ) ) | 
						
							| 102 |  | ax-1cn |  |-  1 e. CC | 
						
							| 103 |  | subcl |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) | 
						
							| 104 | 36 102 103 | sylancl |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - 1 ) e. CC ) | 
						
							| 105 | 36 104 | subnegd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - -u ( A - 1 ) ) = ( A + ( A - 1 ) ) ) | 
						
							| 106 | 100 101 105 | 3eqtr4rd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - -u ( A - 1 ) ) = ( ( 2 x. A ) - 1 ) ) | 
						
							| 107 | 96 98 106 | 3brtr4d |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( 0 - 0 ) <_ ( A - -u ( A - 1 ) ) ) | 
						
							| 108 | 107 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( 0 - 0 ) <_ ( A - -u ( A - 1 ) ) ) | 
						
							| 109 |  | fzmaxdif |  |-  ( ( ( 0 e. ZZ /\ -u C e. ( -u ( A - 1 ) ... 0 ) ) /\ ( A e. ZZ /\ B e. ( 0 ... A ) ) /\ ( 0 - 0 ) <_ ( A - -u ( A - 1 ) ) ) -> ( abs ` ( -u C - B ) ) <_ ( A - -u ( A - 1 ) ) ) | 
						
							| 110 | 77 90 91 54 108 109 | syl221anc |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( -u C - B ) ) <_ ( A - -u ( A - 1 ) ) ) | 
						
							| 111 | 76 110 | eqbrtrd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( B - -u C ) ) <_ ( A - -u ( A - 1 ) ) ) | 
						
							| 112 | 27 | ltm1d |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( 2 x. A ) - 1 ) < ( 2 x. A ) ) | 
						
							| 113 | 106 112 | eqbrtrd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A - -u ( A - 1 ) ) < ( 2 x. A ) ) | 
						
							| 114 | 113 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( A - -u ( A - 1 ) ) < ( 2 x. A ) ) | 
						
							| 115 | 63 69 70 111 114 | lelttrd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( abs ` ( B - -u C ) ) < ( 2 x. A ) ) | 
						
							| 116 | 93 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( 2 x. A ) e. NN ) | 
						
							| 117 |  | simplr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( 2 x. A ) || ( B - -u C ) ) | 
						
							| 118 |  | congabseq |  |-  ( ( ( ( 2 x. A ) e. NN /\ B e. ZZ /\ -u C e. ZZ ) /\ ( 2 x. A ) || ( B - -u C ) ) -> ( ( abs ` ( B - -u C ) ) < ( 2 x. A ) <-> B = -u C ) ) | 
						
							| 119 | 116 71 74 117 118 | syl31anc |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( ( abs ` ( B - -u C ) ) < ( 2 x. A ) <-> B = -u C ) ) | 
						
							| 120 | 115 119 | mpbid |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B = -u C ) | 
						
							| 121 | 56 120 | breqtrd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> 0 <_ -u C ) | 
						
							| 122 |  | elfzelz |  |-  ( C e. ( 0 ... ( A - 1 ) ) -> C e. ZZ ) | 
						
							| 123 | 122 | zred |  |-  ( C e. ( 0 ... ( A - 1 ) ) -> C e. RR ) | 
						
							| 124 | 123 | adantl |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> C e. RR ) | 
						
							| 125 | 124 | le0neg1d |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( C <_ 0 <-> 0 <_ -u C ) ) | 
						
							| 126 | 121 125 | mpbird |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> C <_ 0 ) | 
						
							| 127 |  | elfzle1 |  |-  ( C e. ( 0 ... ( A - 1 ) ) -> 0 <_ C ) | 
						
							| 128 | 127 | adantl |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> 0 <_ C ) | 
						
							| 129 |  | letri3 |  |-  ( ( C e. RR /\ 0 e. RR ) -> ( C = 0 <-> ( C <_ 0 /\ 0 <_ C ) ) ) | 
						
							| 130 | 124 22 129 | sylancl |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> ( C = 0 <-> ( C <_ 0 /\ 0 <_ C ) ) ) | 
						
							| 131 | 126 128 130 | mpbir2and |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> C = 0 ) | 
						
							| 132 | 131 | negeqd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C = -u 0 ) | 
						
							| 133 | 132 88 | eqtrd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> -u C = 0 ) | 
						
							| 134 | 133 120 131 | 3eqtr4d |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C e. ( 0 ... ( A - 1 ) ) ) -> B = C ) | 
						
							| 135 |  | oveq2 |  |-  ( C = A -> ( B - C ) = ( B - A ) ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( B - C ) = ( B - A ) ) | 
						
							| 137 | 136 | fveq2d |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( abs ` ( B - C ) ) = ( abs ` ( B - A ) ) ) | 
						
							| 138 | 40 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( abs ` ( B - C ) ) < ( 2 x. A ) ) | 
						
							| 139 | 137 138 | eqbrtrrd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( abs ` ( B - A ) ) < ( 2 x. A ) ) | 
						
							| 140 | 93 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) e. NN ) | 
						
							| 141 | 7 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> B e. ZZ ) | 
						
							| 142 | 3 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> A e. ZZ ) | 
						
							| 143 |  | simplr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) || ( B - -u C ) ) | 
						
							| 144 | 7 | zcnd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> B e. CC ) | 
						
							| 145 | 36 36 144 | ppncand |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( A + A ) + ( B - A ) ) = ( A + B ) ) | 
						
							| 146 | 36 144 | addcomd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( A + B ) = ( B + A ) ) | 
						
							| 147 | 145 146 | eqtrd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( A + A ) + ( B - A ) ) = ( B + A ) ) | 
						
							| 148 | 147 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( A + A ) + ( B - A ) ) = ( B + A ) ) | 
						
							| 149 |  | oveq2 |  |-  ( C = A -> ( B + C ) = ( B + A ) ) | 
						
							| 150 | 149 | adantl |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( B + C ) = ( B + A ) ) | 
						
							| 151 | 148 150 | eqtr4d |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( A + A ) + ( B - A ) ) = ( B + C ) ) | 
						
							| 152 | 38 | oveq1d |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( ( 2 x. A ) + ( B - A ) ) = ( ( A + A ) + ( B - A ) ) ) | 
						
							| 153 | 152 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( 2 x. A ) + ( B - A ) ) = ( ( A + A ) + ( B - A ) ) ) | 
						
							| 154 | 16 | zcnd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> C e. CC ) | 
						
							| 155 | 144 154 | subnegd |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - -u C ) = ( B + C ) ) | 
						
							| 156 | 155 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( B - -u C ) = ( B + C ) ) | 
						
							| 157 | 151 153 156 | 3eqtr4d |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( 2 x. A ) + ( B - A ) ) = ( B - -u C ) ) | 
						
							| 158 | 143 157 | breqtrrd |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) || ( ( 2 x. A ) + ( B - A ) ) ) | 
						
							| 159 | 5 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) e. ZZ ) | 
						
							| 160 | 7 3 | zsubcld |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B - A ) e. ZZ ) | 
						
							| 161 | 160 | ad2antrr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( B - A ) e. ZZ ) | 
						
							| 162 |  | dvdsadd |  |-  ( ( ( 2 x. A ) e. ZZ /\ ( B - A ) e. ZZ ) -> ( ( 2 x. A ) || ( B - A ) <-> ( 2 x. A ) || ( ( 2 x. A ) + ( B - A ) ) ) ) | 
						
							| 163 | 159 161 162 | syl2anc |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( 2 x. A ) || ( B - A ) <-> ( 2 x. A ) || ( ( 2 x. A ) + ( B - A ) ) ) ) | 
						
							| 164 | 158 163 | mpbird |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( 2 x. A ) || ( B - A ) ) | 
						
							| 165 |  | congabseq |  |-  ( ( ( ( 2 x. A ) e. NN /\ B e. ZZ /\ A e. ZZ ) /\ ( 2 x. A ) || ( B - A ) ) -> ( ( abs ` ( B - A ) ) < ( 2 x. A ) <-> B = A ) ) | 
						
							| 166 | 140 141 142 164 165 | syl31anc |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> ( ( abs ` ( B - A ) ) < ( 2 x. A ) <-> B = A ) ) | 
						
							| 167 | 139 166 | mpbid |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> B = A ) | 
						
							| 168 |  | simpr |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> C = A ) | 
						
							| 169 | 167 168 | eqtr4d |  |-  ( ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) /\ C = A ) -> B = C ) | 
						
							| 170 |  | nnnn0 |  |-  ( A e. NN -> A e. NN0 ) | 
						
							| 171 | 170 | 3ad2ant1 |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. NN0 ) | 
						
							| 172 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 173 | 171 172 | eleqtrdi |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> A e. ( ZZ>= ` 0 ) ) | 
						
							| 174 |  | fzm1 |  |-  ( A e. ( ZZ>= ` 0 ) -> ( C e. ( 0 ... A ) <-> ( C e. ( 0 ... ( A - 1 ) ) \/ C = A ) ) ) | 
						
							| 175 | 174 | biimpa |  |-  ( ( A e. ( ZZ>= ` 0 ) /\ C e. ( 0 ... A ) ) -> ( C e. ( 0 ... ( A - 1 ) ) \/ C = A ) ) | 
						
							| 176 | 173 29 175 | syl2anc |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( C e. ( 0 ... ( A - 1 ) ) \/ C = A ) ) | 
						
							| 177 | 176 | adantr |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) -> ( C e. ( 0 ... ( A - 1 ) ) \/ C = A ) ) | 
						
							| 178 | 134 169 177 | mpjaodan |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( 2 x. A ) || ( B - -u C ) ) -> B = C ) | 
						
							| 179 | 53 178 | jaodan |  |-  ( ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) /\ ( ( 2 x. A ) || ( B - C ) \/ ( 2 x. A ) || ( B - -u C ) ) ) -> B = C ) | 
						
							| 180 | 14 179 | impbida |  |-  ( ( A e. NN /\ B e. ( 0 ... A ) /\ C e. ( 0 ... A ) ) -> ( B = C <-> ( ( 2 x. A ) || ( B - C ) \/ ( 2 x. A ) || ( B - -u C ) ) ) ) |