Step |
Hyp |
Ref |
Expression |
1 |
|
acongrep |
|- ( ( N e. NN /\ M e. ZZ ) -> E. m e. ( 0 ... N ) ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) |
2 |
1
|
ad2ant2l |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> E. m e. ( 0 ... N ) ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) |
3 |
|
acongrep |
|- ( ( N e. NN /\ K e. ZZ ) -> E. k e. ( 0 ... N ) ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) |
4 |
3
|
ad2ant2lr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> E. k e. ( 0 ... N ) ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) |
5 |
|
2z |
|- 2 e. ZZ |
6 |
|
simpl1l |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) ) |
7 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
8 |
7
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. ZZ ) |
9 |
6 8
|
syl |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> N e. ZZ ) |
10 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) |
11 |
5 9 10
|
sylancr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( 2 x. N ) e. ZZ ) |
12 |
|
simplrl |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> K e. ZZ ) |
13 |
12
|
3ad2antl1 |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> K e. ZZ ) |
14 |
|
simpl3l |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> m e. ( 0 ... N ) ) |
15 |
14
|
elfzelzd |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> m e. ZZ ) |
16 |
|
simplrr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> M e. ZZ ) |
17 |
16
|
3ad2antl1 |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> M e. ZZ ) |
18 |
|
simpl2r |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) |
19 |
|
simpl2l |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> k e. ( 0 ... N ) ) |
20 |
|
simplll |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> A e. ( ZZ>= ` 2 ) ) |
21 |
20
|
3ad2antl1 |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> A e. ( ZZ>= ` 2 ) ) |
22 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
23 |
22
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
24 |
23
|
nn0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. ZZ ) |
25 |
21 9 24
|
syl2anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( A rmX N ) e. ZZ ) |
26 |
19
|
elfzelzd |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> k e. ZZ ) |
27 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
28 |
27
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ k e. ZZ ) -> ( A rmY k ) e. ZZ ) |
29 |
21 26 28
|
syl2anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( A rmY k ) e. ZZ ) |
30 |
27
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( A rmY M ) e. ZZ ) |
31 |
21 17 30
|
syl2anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( A rmY M ) e. ZZ ) |
32 |
27
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ m e. ZZ ) -> ( A rmY m ) e. ZZ ) |
33 |
21 15 32
|
syl2anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( A rmY m ) e. ZZ ) |
34 |
27
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ ) -> ( A rmY K ) e. ZZ ) |
35 |
21 13 34
|
syl2anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( A rmY K ) e. ZZ ) |
36 |
|
jm2.26a |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( k e. ZZ /\ K e. ZZ ) ) -> ( ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) -> ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY K ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY K ) ) ) ) ) |
37 |
21 9 26 13 36
|
syl22anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) -> ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY K ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY K ) ) ) ) ) |
38 |
18 37
|
mpd |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY K ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY K ) ) ) ) |
39 |
|
simpr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) |
40 |
|
acongtr |
|- ( ( ( ( A rmX N ) e. ZZ /\ ( A rmY k ) e. ZZ ) /\ ( ( A rmY K ) e. ZZ /\ ( A rmY M ) e. ZZ ) /\ ( ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY K ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY K ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) -> ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY M ) ) ) ) |
41 |
25 29 35 31 38 39 40
|
syl222anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY M ) ) ) ) |
42 |
|
simpl3r |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) |
43 |
|
acongsym |
|- ( ( ( ( 2 x. N ) e. ZZ /\ m e. ZZ /\ M e. ZZ ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) -> ( ( 2 x. N ) || ( M - m ) \/ ( 2 x. N ) || ( M - -u m ) ) ) |
44 |
11 15 17 42 43
|
syl31anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( 2 x. N ) || ( M - m ) \/ ( 2 x. N ) || ( M - -u m ) ) ) |
45 |
|
jm2.26a |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( M e. ZZ /\ m e. ZZ ) ) -> ( ( ( 2 x. N ) || ( M - m ) \/ ( 2 x. N ) || ( M - -u m ) ) -> ( ( A rmX N ) || ( ( A rmY M ) - ( A rmY m ) ) \/ ( A rmX N ) || ( ( A rmY M ) - -u ( A rmY m ) ) ) ) ) |
46 |
21 9 17 15 45
|
syl22anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( ( 2 x. N ) || ( M - m ) \/ ( 2 x. N ) || ( M - -u m ) ) -> ( ( A rmX N ) || ( ( A rmY M ) - ( A rmY m ) ) \/ ( A rmX N ) || ( ( A rmY M ) - -u ( A rmY m ) ) ) ) ) |
47 |
44 46
|
mpd |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( A rmX N ) || ( ( A rmY M ) - ( A rmY m ) ) \/ ( A rmX N ) || ( ( A rmY M ) - -u ( A rmY m ) ) ) ) |
48 |
|
acongtr |
|- ( ( ( ( A rmX N ) e. ZZ /\ ( A rmY k ) e. ZZ ) /\ ( ( A rmY M ) e. ZZ /\ ( A rmY m ) e. ZZ ) /\ ( ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY M ) ) ) /\ ( ( A rmX N ) || ( ( A rmY M ) - ( A rmY m ) ) \/ ( A rmX N ) || ( ( A rmY M ) - -u ( A rmY m ) ) ) ) ) -> ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY m ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY m ) ) ) ) |
49 |
25 29 31 33 41 47 48
|
syl222anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY m ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY m ) ) ) ) |
50 |
|
jm2.26lem3 |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( k e. ( 0 ... N ) /\ m e. ( 0 ... N ) ) /\ ( ( A rmX N ) || ( ( A rmY k ) - ( A rmY m ) ) \/ ( A rmX N ) || ( ( A rmY k ) - -u ( A rmY m ) ) ) ) -> k = m ) |
51 |
6 19 14 49 50
|
syl121anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> k = m ) |
52 |
|
id |
|- ( k = m -> k = m ) |
53 |
|
eqidd |
|- ( k = m -> K = K ) |
54 |
52 53
|
acongeq12d |
|- ( k = m -> ( ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) <-> ( ( 2 x. N ) || ( m - K ) \/ ( 2 x. N ) || ( m - -u K ) ) ) ) |
55 |
51 54
|
syl |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) <-> ( ( 2 x. N ) || ( m - K ) \/ ( 2 x. N ) || ( m - -u K ) ) ) ) |
56 |
18 55
|
mpbid |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( 2 x. N ) || ( m - K ) \/ ( 2 x. N ) || ( m - -u K ) ) ) |
57 |
|
acongsym |
|- ( ( ( ( 2 x. N ) e. ZZ /\ m e. ZZ /\ K e. ZZ ) /\ ( ( 2 x. N ) || ( m - K ) \/ ( 2 x. N ) || ( m - -u K ) ) ) -> ( ( 2 x. N ) || ( K - m ) \/ ( 2 x. N ) || ( K - -u m ) ) ) |
58 |
11 15 13 56 57
|
syl31anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( 2 x. N ) || ( K - m ) \/ ( 2 x. N ) || ( K - -u m ) ) ) |
59 |
|
acongtr |
|- ( ( ( ( 2 x. N ) e. ZZ /\ K e. ZZ ) /\ ( m e. ZZ /\ M e. ZZ ) /\ ( ( ( 2 x. N ) || ( K - m ) \/ ( 2 x. N ) || ( K - -u m ) ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) |
60 |
11 13 15 17 58 42 59
|
syl222anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) /\ ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) |
61 |
60
|
3exp1 |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( k e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) ) -> ( ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) ) ) ) |
62 |
61
|
expd |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( k e. ( 0 ... N ) -> ( ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) -> ( ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) ) ) ) ) |
63 |
62
|
rexlimdv |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( E. k e. ( 0 ... N ) ( ( 2 x. N ) || ( k - K ) \/ ( 2 x. N ) || ( k - -u K ) ) -> ( ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) ) ) ) |
64 |
4 63
|
mpd |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( m e. ( 0 ... N ) /\ ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) ) ) |
65 |
64
|
expd |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( m e. ( 0 ... N ) -> ( ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) ) ) ) |
66 |
65
|
rexlimdv |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( E. m e. ( 0 ... N ) ( ( 2 x. N ) || ( m - M ) \/ ( 2 x. N ) || ( m - -u M ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) ) ) |
67 |
2 66
|
mpd |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) -> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) ) |
68 |
|
jm2.26a |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
69 |
7 68
|
sylanl2 |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
70 |
67 69
|
impbid |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) <-> ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) ) ) |