Metamath Proof Explorer


Theorem jm2.15nn0

Description: Lemma 2.15 of JonesMatijasevic p. 695. rmY is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion jm2.15nn0
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) )

Proof

Step Hyp Ref Expression
1 eluzelz
 |-  ( A e. ( ZZ>= ` 2 ) -> A e. ZZ )
2 eluzelz
 |-  ( B e. ( ZZ>= ` 2 ) -> B e. ZZ )
3 zsubcl
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ )
4 1 2 3 syl2an
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) e. ZZ )
5 0z
 |-  0 e. ZZ
6 congid
 |-  ( ( ( A - B ) e. ZZ /\ 0 e. ZZ ) -> ( A - B ) || ( 0 - 0 ) )
7 4 5 6 sylancl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( 0 - 0 ) )
8 rmy0
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 )
9 rmy0
 |-  ( B e. ( ZZ>= ` 2 ) -> ( B rmY 0 ) = 0 )
10 8 9 oveqan12d
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A rmY 0 ) - ( B rmY 0 ) ) = ( 0 - 0 ) )
11 7 10 breqtrrd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY 0 ) - ( B rmY 0 ) ) )
12 1z
 |-  1 e. ZZ
13 congid
 |-  ( ( ( A - B ) e. ZZ /\ 1 e. ZZ ) -> ( A - B ) || ( 1 - 1 ) )
14 4 12 13 sylancl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( 1 - 1 ) )
15 rmy1
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) = 1 )
16 rmy1
 |-  ( B e. ( ZZ>= ` 2 ) -> ( B rmY 1 ) = 1 )
17 15 16 oveqan12d
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A rmY 1 ) - ( B rmY 1 ) ) = ( 1 - 1 ) )
18 14 17 breqtrrd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY 1 ) - ( B rmY 1 ) ) )
19 pm3.43
 |-  ( ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) )
20 4 3ad2ant2
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) e. ZZ )
21 2z
 |-  2 e. ZZ
22 21 a1i
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> 2 e. ZZ )
23 simp2l
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> A e. ( ZZ>= ` 2 ) )
24 nnz
 |-  ( b e. NN -> b e. ZZ )
25 24 3ad2ant1
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> b e. ZZ )
26 frmy
 |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ
27 26 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ )
28 23 25 27 syl2anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A rmY b ) e. ZZ )
29 1 adantr
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A e. ZZ )
30 29 3ad2ant2
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> A e. ZZ )
31 28 30 zmulcld
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A rmY b ) x. A ) e. ZZ )
32 22 31 zmulcld
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( 2 x. ( ( A rmY b ) x. A ) ) e. ZZ )
33 simp2r
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> B e. ( ZZ>= ` 2 ) )
34 26 fovcl
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( B rmY b ) e. ZZ )
35 33 25 34 syl2anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( B rmY b ) e. ZZ )
36 2 adantl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. ZZ )
37 36 3ad2ant2
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> B e. ZZ )
38 35 37 zmulcld
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( B rmY b ) x. B ) e. ZZ )
39 22 38 zmulcld
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( 2 x. ( ( B rmY b ) x. B ) ) e. ZZ )
40 peano2zm
 |-  ( b e. ZZ -> ( b - 1 ) e. ZZ )
41 24 40 syl
 |-  ( b e. NN -> ( b - 1 ) e. ZZ )
42 41 3ad2ant1
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( b - 1 ) e. ZZ )
43 26 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( b - 1 ) e. ZZ ) -> ( A rmY ( b - 1 ) ) e. ZZ )
44 23 42 43 syl2anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A rmY ( b - 1 ) ) e. ZZ )
45 26 fovcl
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ ( b - 1 ) e. ZZ ) -> ( B rmY ( b - 1 ) ) e. ZZ )
46 33 42 45 syl2anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( B rmY ( b - 1 ) ) e. ZZ )
47 congid
 |-  ( ( ( A - B ) e. ZZ /\ 2 e. ZZ ) -> ( A - B ) || ( 2 - 2 ) )
48 20 21 47 sylancl
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( 2 - 2 ) )
49 simp3r
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) )
50 iddvds
 |-  ( ( A - B ) e. ZZ -> ( A - B ) || ( A - B ) )
51 20 50 syl
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( A - B ) )
52 congmul
 |-  ( ( ( ( A - B ) e. ZZ /\ ( A rmY b ) e. ZZ /\ ( B rmY b ) e. ZZ ) /\ ( A e. ZZ /\ B e. ZZ ) /\ ( ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) /\ ( A - B ) || ( A - B ) ) ) -> ( A - B ) || ( ( ( A rmY b ) x. A ) - ( ( B rmY b ) x. B ) ) )
53 20 28 35 30 37 49 51 52 syl322anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( ( A rmY b ) x. A ) - ( ( B rmY b ) x. B ) ) )
54 congmul
 |-  ( ( ( ( A - B ) e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) /\ ( ( ( A rmY b ) x. A ) e. ZZ /\ ( ( B rmY b ) x. B ) e. ZZ ) /\ ( ( A - B ) || ( 2 - 2 ) /\ ( A - B ) || ( ( ( A rmY b ) x. A ) - ( ( B rmY b ) x. B ) ) ) ) -> ( A - B ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( ( B rmY b ) x. B ) ) ) )
55 20 22 22 31 38 48 53 54 syl322anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( ( B rmY b ) x. B ) ) ) )
56 simp3l
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) )
57 congsub
 |-  ( ( ( ( A - B ) e. ZZ /\ ( 2 x. ( ( A rmY b ) x. A ) ) e. ZZ /\ ( 2 x. ( ( B rmY b ) x. B ) ) e. ZZ ) /\ ( ( A rmY ( b - 1 ) ) e. ZZ /\ ( B rmY ( b - 1 ) ) e. ZZ ) /\ ( ( A - B ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( ( B rmY b ) x. B ) ) ) /\ ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) ) -> ( A - B ) || ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) ) )
58 20 32 39 44 46 55 56 57 syl322anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) ) )
59 rmyluc
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY ( b + 1 ) ) = ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) )
60 23 25 59 syl2anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A rmY ( b + 1 ) ) = ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) )
61 rmyluc
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( B rmY ( b + 1 ) ) = ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) )
62 33 25 61 syl2anc
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( B rmY ( b + 1 ) ) = ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) )
63 60 62 oveq12d
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) = ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) ) )
64 58 63 breqtrrd
 |-  ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) )
65 64 3exp
 |-  ( b e. NN -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) )
66 65 a2d
 |-  ( b e. NN -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) )
67 19 66 syl5
 |-  ( b e. NN -> ( ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) )
68 oveq2
 |-  ( a = 0 -> ( A rmY a ) = ( A rmY 0 ) )
69 oveq2
 |-  ( a = 0 -> ( B rmY a ) = ( B rmY 0 ) )
70 68 69 oveq12d
 |-  ( a = 0 -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY 0 ) - ( B rmY 0 ) ) )
71 70 breq2d
 |-  ( a = 0 -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY 0 ) - ( B rmY 0 ) ) ) )
72 71 imbi2d
 |-  ( a = 0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY 0 ) - ( B rmY 0 ) ) ) ) )
73 oveq2
 |-  ( a = 1 -> ( A rmY a ) = ( A rmY 1 ) )
74 oveq2
 |-  ( a = 1 -> ( B rmY a ) = ( B rmY 1 ) )
75 73 74 oveq12d
 |-  ( a = 1 -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY 1 ) - ( B rmY 1 ) ) )
76 75 breq2d
 |-  ( a = 1 -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY 1 ) - ( B rmY 1 ) ) ) )
77 76 imbi2d
 |-  ( a = 1 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY 1 ) - ( B rmY 1 ) ) ) ) )
78 oveq2
 |-  ( a = ( b - 1 ) -> ( A rmY a ) = ( A rmY ( b - 1 ) ) )
79 oveq2
 |-  ( a = ( b - 1 ) -> ( B rmY a ) = ( B rmY ( b - 1 ) ) )
80 78 79 oveq12d
 |-  ( a = ( b - 1 ) -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) )
81 80 breq2d
 |-  ( a = ( b - 1 ) -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) )
82 81 imbi2d
 |-  ( a = ( b - 1 ) -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) ) )
83 oveq2
 |-  ( a = b -> ( A rmY a ) = ( A rmY b ) )
84 oveq2
 |-  ( a = b -> ( B rmY a ) = ( B rmY b ) )
85 83 84 oveq12d
 |-  ( a = b -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY b ) - ( B rmY b ) ) )
86 85 breq2d
 |-  ( a = b -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) )
87 86 imbi2d
 |-  ( a = b -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) )
88 oveq2
 |-  ( a = ( b + 1 ) -> ( A rmY a ) = ( A rmY ( b + 1 ) ) )
89 oveq2
 |-  ( a = ( b + 1 ) -> ( B rmY a ) = ( B rmY ( b + 1 ) ) )
90 88 89 oveq12d
 |-  ( a = ( b + 1 ) -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) )
91 90 breq2d
 |-  ( a = ( b + 1 ) -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) )
92 91 imbi2d
 |-  ( a = ( b + 1 ) -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) )
93 oveq2
 |-  ( a = N -> ( A rmY a ) = ( A rmY N ) )
94 oveq2
 |-  ( a = N -> ( B rmY a ) = ( B rmY N ) )
95 93 94 oveq12d
 |-  ( a = N -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY N ) - ( B rmY N ) ) )
96 95 breq2d
 |-  ( a = N -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) ) )
97 96 imbi2d
 |-  ( a = N -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) ) ) )
98 11 18 67 72 77 82 87 92 97 2nn0ind
 |-  ( N e. NN0 -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) ) )
99 98 impcom
 |-  ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ N e. NN0 ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) )
100 99 3impa
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) )