Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
2 |
|
eluzelz |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) |
3 |
|
zsubcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) e. ZZ ) |
5 |
|
0z |
|- 0 e. ZZ |
6 |
|
congid |
|- ( ( ( A - B ) e. ZZ /\ 0 e. ZZ ) -> ( A - B ) || ( 0 - 0 ) ) |
7 |
4 5 6
|
sylancl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( 0 - 0 ) ) |
8 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
9 |
|
rmy0 |
|- ( B e. ( ZZ>= ` 2 ) -> ( B rmY 0 ) = 0 ) |
10 |
8 9
|
oveqan12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A rmY 0 ) - ( B rmY 0 ) ) = ( 0 - 0 ) ) |
11 |
7 10
|
breqtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY 0 ) - ( B rmY 0 ) ) ) |
12 |
|
1z |
|- 1 e. ZZ |
13 |
|
congid |
|- ( ( ( A - B ) e. ZZ /\ 1 e. ZZ ) -> ( A - B ) || ( 1 - 1 ) ) |
14 |
4 12 13
|
sylancl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( 1 - 1 ) ) |
15 |
|
rmy1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) = 1 ) |
16 |
|
rmy1 |
|- ( B e. ( ZZ>= ` 2 ) -> ( B rmY 1 ) = 1 ) |
17 |
15 16
|
oveqan12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A rmY 1 ) - ( B rmY 1 ) ) = ( 1 - 1 ) ) |
18 |
14 17
|
breqtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY 1 ) - ( B rmY 1 ) ) ) |
19 |
|
pm3.43 |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) ) |
20 |
4
|
3ad2ant2 |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) e. ZZ ) |
21 |
|
2z |
|- 2 e. ZZ |
22 |
21
|
a1i |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> 2 e. ZZ ) |
23 |
|
simp2l |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> A e. ( ZZ>= ` 2 ) ) |
24 |
|
nnz |
|- ( b e. NN -> b e. ZZ ) |
25 |
24
|
3ad2ant1 |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> b e. ZZ ) |
26 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
27 |
26
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ ) |
28 |
23 25 27
|
syl2anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A rmY b ) e. ZZ ) |
29 |
1
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> A e. ZZ ) |
30 |
29
|
3ad2ant2 |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> A e. ZZ ) |
31 |
28 30
|
zmulcld |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A rmY b ) x. A ) e. ZZ ) |
32 |
22 31
|
zmulcld |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( 2 x. ( ( A rmY b ) x. A ) ) e. ZZ ) |
33 |
|
simp2r |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> B e. ( ZZ>= ` 2 ) ) |
34 |
26
|
fovcl |
|- ( ( B e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( B rmY b ) e. ZZ ) |
35 |
33 25 34
|
syl2anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( B rmY b ) e. ZZ ) |
36 |
2
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. ZZ ) |
37 |
36
|
3ad2ant2 |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> B e. ZZ ) |
38 |
35 37
|
zmulcld |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( B rmY b ) x. B ) e. ZZ ) |
39 |
22 38
|
zmulcld |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( 2 x. ( ( B rmY b ) x. B ) ) e. ZZ ) |
40 |
|
peano2zm |
|- ( b e. ZZ -> ( b - 1 ) e. ZZ ) |
41 |
24 40
|
syl |
|- ( b e. NN -> ( b - 1 ) e. ZZ ) |
42 |
41
|
3ad2ant1 |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( b - 1 ) e. ZZ ) |
43 |
26
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b - 1 ) e. ZZ ) -> ( A rmY ( b - 1 ) ) e. ZZ ) |
44 |
23 42 43
|
syl2anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A rmY ( b - 1 ) ) e. ZZ ) |
45 |
26
|
fovcl |
|- ( ( B e. ( ZZ>= ` 2 ) /\ ( b - 1 ) e. ZZ ) -> ( B rmY ( b - 1 ) ) e. ZZ ) |
46 |
33 42 45
|
syl2anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( B rmY ( b - 1 ) ) e. ZZ ) |
47 |
|
congid |
|- ( ( ( A - B ) e. ZZ /\ 2 e. ZZ ) -> ( A - B ) || ( 2 - 2 ) ) |
48 |
20 21 47
|
sylancl |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( 2 - 2 ) ) |
49 |
|
simp3r |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) |
50 |
|
iddvds |
|- ( ( A - B ) e. ZZ -> ( A - B ) || ( A - B ) ) |
51 |
20 50
|
syl |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( A - B ) ) |
52 |
|
congmul |
|- ( ( ( ( A - B ) e. ZZ /\ ( A rmY b ) e. ZZ /\ ( B rmY b ) e. ZZ ) /\ ( A e. ZZ /\ B e. ZZ ) /\ ( ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) /\ ( A - B ) || ( A - B ) ) ) -> ( A - B ) || ( ( ( A rmY b ) x. A ) - ( ( B rmY b ) x. B ) ) ) |
53 |
20 28 35 30 37 49 51 52
|
syl322anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( ( A rmY b ) x. A ) - ( ( B rmY b ) x. B ) ) ) |
54 |
|
congmul |
|- ( ( ( ( A - B ) e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) /\ ( ( ( A rmY b ) x. A ) e. ZZ /\ ( ( B rmY b ) x. B ) e. ZZ ) /\ ( ( A - B ) || ( 2 - 2 ) /\ ( A - B ) || ( ( ( A rmY b ) x. A ) - ( ( B rmY b ) x. B ) ) ) ) -> ( A - B ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( ( B rmY b ) x. B ) ) ) ) |
55 |
20 22 22 31 38 48 53 54
|
syl322anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( ( B rmY b ) x. B ) ) ) ) |
56 |
|
simp3l |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) |
57 |
|
congsub |
|- ( ( ( ( A - B ) e. ZZ /\ ( 2 x. ( ( A rmY b ) x. A ) ) e. ZZ /\ ( 2 x. ( ( B rmY b ) x. B ) ) e. ZZ ) /\ ( ( A rmY ( b - 1 ) ) e. ZZ /\ ( B rmY ( b - 1 ) ) e. ZZ ) /\ ( ( A - B ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( ( B rmY b ) x. B ) ) ) /\ ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) ) -> ( A - B ) || ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) ) ) |
58 |
20 32 39 44 46 55 56 57
|
syl322anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) ) ) |
59 |
|
rmyluc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY ( b + 1 ) ) = ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) ) |
60 |
23 25 59
|
syl2anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A rmY ( b + 1 ) ) = ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) ) |
61 |
|
rmyluc |
|- ( ( B e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( B rmY ( b + 1 ) ) = ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) ) |
62 |
33 25 61
|
syl2anc |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( B rmY ( b + 1 ) ) = ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) ) |
63 |
60 62
|
oveq12d |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) = ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( ( B rmY b ) x. B ) ) - ( B rmY ( b - 1 ) ) ) ) ) |
64 |
58 63
|
breqtrrd |
|- ( ( b e. NN /\ ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) |
65 |
64
|
3exp |
|- ( b e. NN -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) ) |
66 |
65
|
a2d |
|- ( b e. NN -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) /\ ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) ) |
67 |
19 66
|
syl5 |
|- ( b e. NN -> ( ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) /\ ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) ) |
68 |
|
oveq2 |
|- ( a = 0 -> ( A rmY a ) = ( A rmY 0 ) ) |
69 |
|
oveq2 |
|- ( a = 0 -> ( B rmY a ) = ( B rmY 0 ) ) |
70 |
68 69
|
oveq12d |
|- ( a = 0 -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY 0 ) - ( B rmY 0 ) ) ) |
71 |
70
|
breq2d |
|- ( a = 0 -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY 0 ) - ( B rmY 0 ) ) ) ) |
72 |
71
|
imbi2d |
|- ( a = 0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY 0 ) - ( B rmY 0 ) ) ) ) ) |
73 |
|
oveq2 |
|- ( a = 1 -> ( A rmY a ) = ( A rmY 1 ) ) |
74 |
|
oveq2 |
|- ( a = 1 -> ( B rmY a ) = ( B rmY 1 ) ) |
75 |
73 74
|
oveq12d |
|- ( a = 1 -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY 1 ) - ( B rmY 1 ) ) ) |
76 |
75
|
breq2d |
|- ( a = 1 -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY 1 ) - ( B rmY 1 ) ) ) ) |
77 |
76
|
imbi2d |
|- ( a = 1 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY 1 ) - ( B rmY 1 ) ) ) ) ) |
78 |
|
oveq2 |
|- ( a = ( b - 1 ) -> ( A rmY a ) = ( A rmY ( b - 1 ) ) ) |
79 |
|
oveq2 |
|- ( a = ( b - 1 ) -> ( B rmY a ) = ( B rmY ( b - 1 ) ) ) |
80 |
78 79
|
oveq12d |
|- ( a = ( b - 1 ) -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) |
81 |
80
|
breq2d |
|- ( a = ( b - 1 ) -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) ) |
82 |
81
|
imbi2d |
|- ( a = ( b - 1 ) -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b - 1 ) ) - ( B rmY ( b - 1 ) ) ) ) ) ) |
83 |
|
oveq2 |
|- ( a = b -> ( A rmY a ) = ( A rmY b ) ) |
84 |
|
oveq2 |
|- ( a = b -> ( B rmY a ) = ( B rmY b ) ) |
85 |
83 84
|
oveq12d |
|- ( a = b -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY b ) - ( B rmY b ) ) ) |
86 |
85
|
breq2d |
|- ( a = b -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) |
87 |
86
|
imbi2d |
|- ( a = b -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY b ) - ( B rmY b ) ) ) ) ) |
88 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( A rmY a ) = ( A rmY ( b + 1 ) ) ) |
89 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( B rmY a ) = ( B rmY ( b + 1 ) ) ) |
90 |
88 89
|
oveq12d |
|- ( a = ( b + 1 ) -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) |
91 |
90
|
breq2d |
|- ( a = ( b + 1 ) -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) |
92 |
91
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY ( b + 1 ) ) - ( B rmY ( b + 1 ) ) ) ) ) ) |
93 |
|
oveq2 |
|- ( a = N -> ( A rmY a ) = ( A rmY N ) ) |
94 |
|
oveq2 |
|- ( a = N -> ( B rmY a ) = ( B rmY N ) ) |
95 |
93 94
|
oveq12d |
|- ( a = N -> ( ( A rmY a ) - ( B rmY a ) ) = ( ( A rmY N ) - ( B rmY N ) ) ) |
96 |
95
|
breq2d |
|- ( a = N -> ( ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) <-> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) ) ) |
97 |
96
|
imbi2d |
|- ( a = N -> ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY a ) - ( B rmY a ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) ) ) ) |
98 |
11 18 67 72 77 82 87 92 97
|
2nn0ind |
|- ( N e. NN0 -> ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) ) ) |
99 |
98
|
impcom |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ N e. NN0 ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) ) |
100 |
99
|
3impa |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A - B ) || ( ( A rmY N ) - ( B rmY N ) ) ) |