Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
simplr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> N e. ZZ ) |
3 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) |
4 |
1 2 3
|
sylancr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( 2 x. N ) e. ZZ ) |
5 |
|
zsubcl |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( K - M ) e. ZZ ) |
6 |
5
|
adantl |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( K - M ) e. ZZ ) |
7 |
|
divides |
|- ( ( ( 2 x. N ) e. ZZ /\ ( K - M ) e. ZZ ) -> ( ( 2 x. N ) || ( K - M ) <-> E. a e. ZZ ( a x. ( 2 x. N ) ) = ( K - M ) ) ) |
8 |
4 6 7
|
syl2anc |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( 2 x. N ) || ( K - M ) <-> E. a e. ZZ ( a x. ( 2 x. N ) ) = ( K - M ) ) ) |
9 |
|
simplll |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> A e. ( ZZ>= ` 2 ) ) |
10 |
|
simplrr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> M e. ZZ ) |
11 |
|
simpllr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> N e. ZZ ) |
12 |
|
simpr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> a e. ZZ ) |
13 |
|
jm2.25 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) /\ a e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
14 |
9 10 11 12 13
|
syl121anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
15 |
14
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - M ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
16 |
|
oveq2 |
|- ( ( a x. ( 2 x. N ) ) = ( K - M ) -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( K - M ) ) ) |
17 |
16
|
oveq2d |
|- ( ( a x. ( 2 x. N ) ) = ( K - M ) -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( K - M ) ) ) ) |
18 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
19 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
20 |
|
pncan3 |
|- ( ( M e. CC /\ K e. CC ) -> ( M + ( K - M ) ) = K ) |
21 |
18 19 20
|
syl2anr |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( M + ( K - M ) ) = K ) |
22 |
21
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( M + ( K - M ) ) = K ) |
23 |
22
|
oveq2d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( A rmY ( M + ( K - M ) ) ) = ( A rmY K ) ) |
24 |
17 23
|
sylan9eqr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - M ) ) -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY K ) ) |
25 |
|
eqidd |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - M ) ) -> ( A rmY M ) = ( A rmY M ) ) |
26 |
24 25
|
acongeq12d |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - M ) ) -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
27 |
15 26
|
mpbid |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - M ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) |
28 |
27
|
rexlimdva2 |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( E. a e. ZZ ( a x. ( 2 x. N ) ) = ( K - M ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
29 |
8 28
|
sylbid |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( 2 x. N ) || ( K - M ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
30 |
|
simprl |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> K e. ZZ ) |
31 |
|
znegcl |
|- ( M e. ZZ -> -u M e. ZZ ) |
32 |
31
|
ad2antll |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> -u M e. ZZ ) |
33 |
30 32
|
zsubcld |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( K - -u M ) e. ZZ ) |
34 |
|
divides |
|- ( ( ( 2 x. N ) e. ZZ /\ ( K - -u M ) e. ZZ ) -> ( ( 2 x. N ) || ( K - -u M ) <-> E. a e. ZZ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) ) |
35 |
4 33 34
|
syl2anc |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( 2 x. N ) || ( K - -u M ) <-> E. a e. ZZ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) ) |
36 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
37 |
36
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
38 |
37
|
nn0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. ZZ ) |
39 |
9 11 38
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( A rmX N ) e. ZZ ) |
40 |
|
simplrl |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> K e. ZZ ) |
41 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
42 |
41
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ ) -> ( A rmY K ) e. ZZ ) |
43 |
9 40 42
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( A rmY K ) e. ZZ ) |
44 |
41
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( A rmY M ) e. ZZ ) |
45 |
9 10 44
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( A rmY M ) e. ZZ ) |
46 |
39 43 45
|
3jca |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( ( A rmX N ) e. ZZ /\ ( A rmY K ) e. ZZ /\ ( A rmY M ) e. ZZ ) ) |
47 |
46
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) -> ( ( A rmX N ) e. ZZ /\ ( A rmY K ) e. ZZ /\ ( A rmY M ) e. ZZ ) ) |
48 |
32
|
adantr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> -u M e. ZZ ) |
49 |
|
jm2.25 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( -u M e. ZZ /\ N e. ZZ ) /\ a e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY -u M ) ) \/ ( A rmX N ) || ( ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY -u M ) ) ) ) |
50 |
9 48 11 12 49
|
syl121anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY -u M ) ) \/ ( A rmX N ) || ( ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY -u M ) ) ) ) |
51 |
50
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) -> ( ( A rmX N ) || ( ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY -u M ) ) \/ ( A rmX N ) || ( ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY -u M ) ) ) ) |
52 |
|
oveq2 |
|- ( ( a x. ( 2 x. N ) ) = ( K - -u M ) -> ( -u M + ( a x. ( 2 x. N ) ) ) = ( -u M + ( K - -u M ) ) ) |
53 |
52
|
oveq2d |
|- ( ( a x. ( 2 x. N ) ) = ( K - -u M ) -> ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( -u M + ( K - -u M ) ) ) ) |
54 |
18
|
negcld |
|- ( M e. ZZ -> -u M e. CC ) |
55 |
|
pncan3 |
|- ( ( -u M e. CC /\ K e. CC ) -> ( -u M + ( K - -u M ) ) = K ) |
56 |
54 19 55
|
syl2anr |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( -u M + ( K - -u M ) ) = K ) |
57 |
56
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( -u M + ( K - -u M ) ) = K ) |
58 |
57
|
oveq2d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( A rmY ( -u M + ( K - -u M ) ) ) = ( A rmY K ) ) |
59 |
53 58
|
sylan9eqr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) -> ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY K ) ) |
60 |
|
rmyneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( A rmY -u M ) = -u ( A rmY M ) ) |
61 |
9 10 60
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) -> ( A rmY -u M ) = -u ( A rmY M ) ) |
62 |
61
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) -> ( A rmY -u M ) = -u ( A rmY M ) ) |
63 |
59 62
|
acongeq12d |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) -> ( ( ( A rmX N ) || ( ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY -u M ) ) \/ ( A rmX N ) || ( ( A rmY ( -u M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY -u M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u -u ( A rmY M ) ) ) ) ) |
64 |
51 63
|
mpbid |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u -u ( A rmY M ) ) ) ) |
65 |
|
acongneg2 |
|- ( ( ( ( A rmX N ) e. ZZ /\ ( A rmY K ) e. ZZ /\ ( A rmY M ) e. ZZ ) /\ ( ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u -u ( A rmY M ) ) ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) |
66 |
47 64 65
|
syl2anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) /\ a e. ZZ ) /\ ( a x. ( 2 x. N ) ) = ( K - -u M ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) |
67 |
66
|
rexlimdva2 |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( E. a e. ZZ ( a x. ( 2 x. N ) ) = ( K - -u M ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
68 |
35 67
|
sylbid |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( 2 x. N ) || ( K - -u M ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
69 |
29 68
|
jaod |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( 2 x. N ) || ( K - M ) \/ ( 2 x. N ) || ( K - -u M ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |