Metamath Proof Explorer


Theorem jm2.25

Description: Lemma for jm2.26 . Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion jm2.25
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) /\ I e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) )

Proof

Step Hyp Ref Expression
1 simprl
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> A e. ( ZZ>= ` 2 ) )
2 simprrr
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> N e. ZZ )
3 frmx
 |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0
4 3 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 )
5 4 nn0zd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. ZZ )
6 1 2 5 syl2anc
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) e. ZZ )
7 simprrl
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> M e. ZZ )
8 frmy
 |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ
9 8 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( A rmY M ) e. ZZ )
10 1 7 9 syl2anc
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY M ) e. ZZ )
11 congid
 |-  ( ( ( A rmX N ) e. ZZ /\ ( A rmY M ) e. ZZ ) -> ( A rmX N ) || ( ( A rmY M ) - ( A rmY M ) ) )
12 6 10 11 syl2anc
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmY M ) - ( A rmY M ) ) )
13 2cnd
 |-  ( N e. ZZ -> 2 e. CC )
14 zcn
 |-  ( N e. ZZ -> N e. CC )
15 13 14 mulcld
 |-  ( N e. ZZ -> ( 2 x. N ) e. CC )
16 15 mul02d
 |-  ( N e. ZZ -> ( 0 x. ( 2 x. N ) ) = 0 )
17 16 adantl
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 x. ( 2 x. N ) ) = 0 )
18 17 oveq2d
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M + ( 0 x. ( 2 x. N ) ) ) = ( M + 0 ) )
19 zcn
 |-  ( M e. ZZ -> M e. CC )
20 19 addid1d
 |-  ( M e. ZZ -> ( M + 0 ) = M )
21 20 adantr
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M + 0 ) = M )
22 18 21 eqtrd
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M + ( 0 x. ( 2 x. N ) ) ) = M )
23 22 ad2antll
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( 0 x. ( 2 x. N ) ) ) = M )
24 23 oveq2d
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) = ( A rmY M ) )
25 24 oveq1d
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY M ) - ( A rmY M ) ) )
26 12 25 breqtrrd
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) )
27 26 orcd
 |-  ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) )
28 27 ex
 |-  ( I e. ZZ -> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) )
29 simprl
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> A e. ( ZZ>= ` 2 ) )
30 simprrr
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> N e. ZZ )
31 29 30 5 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) e. ZZ )
32 simprrl
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> M e. ZZ )
33 29 32 9 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY M ) e. ZZ )
34 simpl
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> b e. ZZ )
35 34 peano2zd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( b + 1 ) e. ZZ )
36 eluzel2
 |-  ( A e. ( ZZ>= ` 2 ) -> 2 e. ZZ )
37 36 ad2antrl
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> 2 e. ZZ )
38 37 30 zmulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. N ) e. ZZ )
39 35 38 zmulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( b + 1 ) x. ( 2 x. N ) ) e. ZZ )
40 32 39 zaddcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) e. ZZ )
41 8 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) e. ZZ ) -> ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) e. ZZ )
42 29 40 41 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) e. ZZ )
43 34 38 zmulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( b x. ( 2 x. N ) ) e. ZZ )
44 32 43 zaddcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( b x. ( 2 x. N ) ) ) e. ZZ )
45 8 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( b x. ( 2 x. N ) ) ) e. ZZ ) -> ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ )
46 29 44 45 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ )
47 3 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. N ) e. ZZ ) -> ( A rmX ( 2 x. N ) ) e. NN0 )
48 47 nn0zd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. N ) e. ZZ ) -> ( A rmX ( 2 x. N ) ) e. ZZ )
49 29 38 48 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX ( 2 x. N ) ) e. ZZ )
50 46 49 zmulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) e. ZZ )
51 46 znegcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ )
52 50 51 zsubcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) e. ZZ )
53 3 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( b x. ( 2 x. N ) ) ) e. ZZ ) -> ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) e. NN0 )
54 53 nn0zd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( b x. ( 2 x. N ) ) ) e. ZZ ) -> ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ )
55 29 44 54 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ )
56 8 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. N ) e. ZZ ) -> ( A rmY ( 2 x. N ) ) e. ZZ )
57 29 38 56 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( 2 x. N ) ) e. ZZ )
58 55 57 zmulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) e. ZZ )
59 37 31 zmulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( A rmX N ) ) e. ZZ )
60 dvdsmul2
 |-  ( ( ( 2 x. ( A rmX N ) ) e. ZZ /\ ( A rmX N ) e. ZZ ) -> ( A rmX N ) || ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) )
61 59 31 60 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) )
62 rmxdbl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( 2 x. N ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) )
63 29 30 62 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX ( 2 x. N ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) )
64 63 oveq1d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( 2 x. N ) ) + 1 ) = ( ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) + 1 ) )
65 2cnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> 2 e. CC )
66 29 30 4 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) e. NN0 )
67 66 nn0cnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) e. CC )
68 67 sqcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) ^ 2 ) e. CC )
69 65 68 mulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( ( A rmX N ) ^ 2 ) ) e. CC )
70 1cnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> 1 e. CC )
71 69 70 npcand
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) + 1 ) = ( 2 x. ( ( A rmX N ) ^ 2 ) ) )
72 67 sqvald
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) ^ 2 ) = ( ( A rmX N ) x. ( A rmX N ) ) )
73 72 oveq2d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( ( A rmX N ) ^ 2 ) ) = ( 2 x. ( ( A rmX N ) x. ( A rmX N ) ) ) )
74 mulass
 |-  ( ( 2 e. CC /\ ( A rmX N ) e. CC /\ ( A rmX N ) e. CC ) -> ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) = ( 2 x. ( ( A rmX N ) x. ( A rmX N ) ) ) )
75 74 eqcomd
 |-  ( ( 2 e. CC /\ ( A rmX N ) e. CC /\ ( A rmX N ) e. CC ) -> ( 2 x. ( ( A rmX N ) x. ( A rmX N ) ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) )
76 65 67 67 75 syl3anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( ( A rmX N ) x. ( A rmX N ) ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) )
77 73 76 eqtrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( ( A rmX N ) ^ 2 ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) )
78 64 71 77 3eqtrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( 2 x. N ) ) + 1 ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) )
79 61 78 breqtrrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmX ( 2 x. N ) ) + 1 ) )
80 49 peano2zd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( 2 x. N ) ) + 1 ) e. ZZ )
81 dvdsmultr2
 |-  ( ( ( A rmX N ) e. ZZ /\ ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ /\ ( ( A rmX ( 2 x. N ) ) + 1 ) e. ZZ ) -> ( ( A rmX N ) || ( ( A rmX ( 2 x. N ) ) + 1 ) -> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) ) )
82 31 46 80 81 syl3anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) || ( ( A rmX ( 2 x. N ) ) + 1 ) -> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) ) )
83 79 82 mpd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) )
84 46 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. CC )
85 84 mulid1d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. 1 ) = ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) )
86 85 oveq2d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. 1 ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) )
87 49 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX ( 2 x. N ) ) e. CC )
88 84 87 70 adddid
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. 1 ) ) )
89 50 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) e. CC )
90 89 84 subnegd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) )
91 86 88 90 3eqtr4d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) )
92 83 91 breqtrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) )
93 8 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ )
94 29 30 93 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY N ) e. ZZ )
95 37 94 zmulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( A rmY N ) ) e. ZZ )
96 dvdsmul2
 |-  ( ( ( 2 x. ( A rmY N ) ) e. ZZ /\ ( A rmX N ) e. ZZ ) -> ( A rmX N ) || ( ( 2 x. ( A rmY N ) ) x. ( A rmX N ) ) )
97 95 31 96 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( 2 x. ( A rmY N ) ) x. ( A rmX N ) ) )
98 rmydbl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( 2 x. N ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) )
99 29 30 98 syl2anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( 2 x. N ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) )
100 94 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY N ) e. CC )
101 65 67 100 mul32d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) = ( ( 2 x. ( A rmY N ) ) x. ( A rmX N ) ) )
102 99 101 eqtrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( 2 x. N ) ) = ( ( 2 x. ( A rmY N ) ) x. ( A rmX N ) ) )
103 97 102 breqtrrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( A rmY ( 2 x. N ) ) )
104 dvdsmultr2
 |-  ( ( ( A rmX N ) e. ZZ /\ ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ /\ ( A rmY ( 2 x. N ) ) e. ZZ ) -> ( ( A rmX N ) || ( A rmY ( 2 x. N ) ) -> ( A rmX N ) || ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) )
105 31 55 57 104 syl3anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) || ( A rmY ( 2 x. N ) ) -> ( A rmX N ) || ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) )
106 103 105 mpd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) )
107 31 52 58 92 106 dvds2addd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) )
108 34 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> b e. CC )
109 38 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. N ) e. CC )
110 108 70 109 adddird
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( b + 1 ) x. ( 2 x. N ) ) = ( ( b x. ( 2 x. N ) ) + ( 1 x. ( 2 x. N ) ) ) )
111 110 oveq2d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) = ( M + ( ( b x. ( 2 x. N ) ) + ( 1 x. ( 2 x. N ) ) ) ) )
112 32 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> M e. CC )
113 43 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( b x. ( 2 x. N ) ) e. CC )
114 1zzd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> 1 e. ZZ )
115 114 38 zmulcld
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 1 x. ( 2 x. N ) ) e. ZZ )
116 115 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 1 x. ( 2 x. N ) ) e. CC )
117 112 113 116 addassd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( M + ( b x. ( 2 x. N ) ) ) + ( 1 x. ( 2 x. N ) ) ) = ( M + ( ( b x. ( 2 x. N ) ) + ( 1 x. ( 2 x. N ) ) ) ) )
118 109 mulid2d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 1 x. ( 2 x. N ) ) = ( 2 x. N ) )
119 118 oveq2d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( M + ( b x. ( 2 x. N ) ) ) + ( 1 x. ( 2 x. N ) ) ) = ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) )
120 111 117 119 3eqtr2d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) = ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) )
121 120 oveq2d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) = ( A rmY ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) ) )
122 rmyadd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( b x. ( 2 x. N ) ) ) e. ZZ /\ ( 2 x. N ) e. ZZ ) -> ( A rmY ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) )
123 29 44 38 122 syl3anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) )
124 121 123 eqtrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) )
125 124 oveq1d
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) = ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) )
126 58 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) e. CC )
127 51 zcnd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. CC )
128 89 126 127 addsubd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) = ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) )
129 125 128 eqtrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) = ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) )
130 107 129 breqtrrd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) )
131 130 olcd
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) )
132 jm2.25lem1
 |-  ( ( ( ( A rmX N ) e. ZZ /\ ( A rmY M ) e. ZZ ) /\ ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) e. ZZ /\ ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ ) /\ ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) )
133 31 33 42 46 131 132 syl221anc
 |-  ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) )
134 133 pm5.74da
 |-  ( b e. ZZ -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) )
135 oveq1
 |-  ( a = b -> ( a x. ( 2 x. N ) ) = ( b x. ( 2 x. N ) ) )
136 135 oveq2d
 |-  ( a = b -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( b x. ( 2 x. N ) ) ) )
137 136 oveq2d
 |-  ( a = b -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) )
138 137 oveq1d
 |-  ( a = b -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) )
139 138 breq2d
 |-  ( a = b -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) )
140 137 oveq1d
 |-  ( a = b -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) = ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) )
141 140 breq2d
 |-  ( a = b -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) )
142 139 141 orbi12d
 |-  ( a = b -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) )
143 142 imbi2d
 |-  ( a = b -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) )
144 oveq1
 |-  ( a = ( b + 1 ) -> ( a x. ( 2 x. N ) ) = ( ( b + 1 ) x. ( 2 x. N ) ) )
145 144 oveq2d
 |-  ( a = ( b + 1 ) -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) )
146 145 oveq2d
 |-  ( a = ( b + 1 ) -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) )
147 146 oveq1d
 |-  ( a = ( b + 1 ) -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) )
148 147 breq2d
 |-  ( a = ( b + 1 ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) )
149 146 oveq1d
 |-  ( a = ( b + 1 ) -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) = ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) )
150 149 breq2d
 |-  ( a = ( b + 1 ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) )
151 148 150 orbi12d
 |-  ( a = ( b + 1 ) -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) )
152 151 imbi2d
 |-  ( a = ( b + 1 ) -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) )
153 oveq1
 |-  ( a = 0 -> ( a x. ( 2 x. N ) ) = ( 0 x. ( 2 x. N ) ) )
154 153 oveq2d
 |-  ( a = 0 -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( 0 x. ( 2 x. N ) ) ) )
155 154 oveq2d
 |-  ( a = 0 -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) )
156 155 oveq1d
 |-  ( a = 0 -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) )
157 156 breq2d
 |-  ( a = 0 -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) )
158 155 oveq1d
 |-  ( a = 0 -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) = ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) )
159 158 breq2d
 |-  ( a = 0 -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) )
160 157 159 orbi12d
 |-  ( a = 0 -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) )
161 160 imbi2d
 |-  ( a = 0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) )
162 oveq1
 |-  ( a = I -> ( a x. ( 2 x. N ) ) = ( I x. ( 2 x. N ) ) )
163 162 oveq2d
 |-  ( a = I -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( I x. ( 2 x. N ) ) ) )
164 163 oveq2d
 |-  ( a = I -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) )
165 164 oveq1d
 |-  ( a = I -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) )
166 165 breq2d
 |-  ( a = I -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) )
167 164 oveq1d
 |-  ( a = I -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) = ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) )
168 167 breq2d
 |-  ( a = I -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) )
169 166 168 orbi12d
 |-  ( a = I -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) )
170 169 imbi2d
 |-  ( a = I -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) )
171 134 143 152 161 170 zindbi
 |-  ( I e. ZZ -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) )
172 28 171 mpbid
 |-  ( I e. ZZ -> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) )
173 172 impcom
 |-  ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) /\ I e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) )
174 173 3impa
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) /\ I e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) )