Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> A e. ( ZZ>= ` 2 ) ) |
2 |
|
simprrr |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> N e. ZZ ) |
3 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
4 |
3
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
5 |
4
|
nn0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. ZZ ) |
6 |
1 2 5
|
syl2anc |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) e. ZZ ) |
7 |
|
simprrl |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> M e. ZZ ) |
8 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
9 |
8
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( A rmY M ) e. ZZ ) |
10 |
1 7 9
|
syl2anc |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY M ) e. ZZ ) |
11 |
|
congid |
|- ( ( ( A rmX N ) e. ZZ /\ ( A rmY M ) e. ZZ ) -> ( A rmX N ) || ( ( A rmY M ) - ( A rmY M ) ) ) |
12 |
6 10 11
|
syl2anc |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmY M ) - ( A rmY M ) ) ) |
13 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
14 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
15 |
13 14
|
mulcld |
|- ( N e. ZZ -> ( 2 x. N ) e. CC ) |
16 |
15
|
mul02d |
|- ( N e. ZZ -> ( 0 x. ( 2 x. N ) ) = 0 ) |
17 |
16
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 x. ( 2 x. N ) ) = 0 ) |
18 |
17
|
oveq2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + ( 0 x. ( 2 x. N ) ) ) = ( M + 0 ) ) |
19 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
20 |
19
|
addid1d |
|- ( M e. ZZ -> ( M + 0 ) = M ) |
21 |
20
|
adantr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + 0 ) = M ) |
22 |
18 21
|
eqtrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + ( 0 x. ( 2 x. N ) ) ) = M ) |
23 |
22
|
ad2antll |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( 0 x. ( 2 x. N ) ) ) = M ) |
24 |
23
|
oveq2d |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) = ( A rmY M ) ) |
25 |
24
|
oveq1d |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY M ) - ( A rmY M ) ) ) |
26 |
12 25
|
breqtrrd |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) |
27 |
26
|
orcd |
|- ( ( I e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
28 |
27
|
ex |
|- ( I e. ZZ -> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) |
29 |
|
simprl |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> A e. ( ZZ>= ` 2 ) ) |
30 |
|
simprrr |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> N e. ZZ ) |
31 |
29 30 5
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) e. ZZ ) |
32 |
|
simprrl |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> M e. ZZ ) |
33 |
29 32 9
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY M ) e. ZZ ) |
34 |
|
simpl |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> b e. ZZ ) |
35 |
34
|
peano2zd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( b + 1 ) e. ZZ ) |
36 |
|
eluzel2 |
|- ( A e. ( ZZ>= ` 2 ) -> 2 e. ZZ ) |
37 |
36
|
ad2antrl |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> 2 e. ZZ ) |
38 |
37 30
|
zmulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. N ) e. ZZ ) |
39 |
35 38
|
zmulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( b + 1 ) x. ( 2 x. N ) ) e. ZZ ) |
40 |
32 39
|
zaddcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) e. ZZ ) |
41 |
8
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) e. ZZ ) -> ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) e. ZZ ) |
42 |
29 40 41
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) e. ZZ ) |
43 |
34 38
|
zmulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( b x. ( 2 x. N ) ) e. ZZ ) |
44 |
32 43
|
zaddcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( b x. ( 2 x. N ) ) ) e. ZZ ) |
45 |
8
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( b x. ( 2 x. N ) ) ) e. ZZ ) -> ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ ) |
46 |
29 44 45
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ ) |
47 |
3
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. N ) e. ZZ ) -> ( A rmX ( 2 x. N ) ) e. NN0 ) |
48 |
47
|
nn0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. N ) e. ZZ ) -> ( A rmX ( 2 x. N ) ) e. ZZ ) |
49 |
29 38 48
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX ( 2 x. N ) ) e. ZZ ) |
50 |
46 49
|
zmulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) e. ZZ ) |
51 |
46
|
znegcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ ) |
52 |
50 51
|
zsubcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) e. ZZ ) |
53 |
3
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( b x. ( 2 x. N ) ) ) e. ZZ ) -> ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) e. NN0 ) |
54 |
53
|
nn0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( b x. ( 2 x. N ) ) ) e. ZZ ) -> ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ ) |
55 |
29 44 54
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ ) |
56 |
8
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( 2 x. N ) e. ZZ ) -> ( A rmY ( 2 x. N ) ) e. ZZ ) |
57 |
29 38 56
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( 2 x. N ) ) e. ZZ ) |
58 |
55 57
|
zmulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) e. ZZ ) |
59 |
37 31
|
zmulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( A rmX N ) ) e. ZZ ) |
60 |
|
dvdsmul2 |
|- ( ( ( 2 x. ( A rmX N ) ) e. ZZ /\ ( A rmX N ) e. ZZ ) -> ( A rmX N ) || ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) ) |
61 |
59 31 60
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) ) |
62 |
|
rmxdbl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( 2 x. N ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) ) |
63 |
29 30 62
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX ( 2 x. N ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) ) |
64 |
63
|
oveq1d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( 2 x. N ) ) + 1 ) = ( ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) + 1 ) ) |
65 |
|
2cnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> 2 e. CC ) |
66 |
29 30 4
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) e. NN0 ) |
67 |
66
|
nn0cnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) e. CC ) |
68 |
67
|
sqcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) ^ 2 ) e. CC ) |
69 |
65 68
|
mulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( ( A rmX N ) ^ 2 ) ) e. CC ) |
70 |
|
1cnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> 1 e. CC ) |
71 |
69 70
|
npcand |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) + 1 ) = ( 2 x. ( ( A rmX N ) ^ 2 ) ) ) |
72 |
67
|
sqvald |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) ^ 2 ) = ( ( A rmX N ) x. ( A rmX N ) ) ) |
73 |
72
|
oveq2d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( ( A rmX N ) ^ 2 ) ) = ( 2 x. ( ( A rmX N ) x. ( A rmX N ) ) ) ) |
74 |
|
mulass |
|- ( ( 2 e. CC /\ ( A rmX N ) e. CC /\ ( A rmX N ) e. CC ) -> ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) = ( 2 x. ( ( A rmX N ) x. ( A rmX N ) ) ) ) |
75 |
74
|
eqcomd |
|- ( ( 2 e. CC /\ ( A rmX N ) e. CC /\ ( A rmX N ) e. CC ) -> ( 2 x. ( ( A rmX N ) x. ( A rmX N ) ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) ) |
76 |
65 67 67 75
|
syl3anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( ( A rmX N ) x. ( A rmX N ) ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) ) |
77 |
73 76
|
eqtrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( ( A rmX N ) ^ 2 ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) ) |
78 |
64 71 77
|
3eqtrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( 2 x. N ) ) + 1 ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmX N ) ) ) |
79 |
61 78
|
breqtrrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmX ( 2 x. N ) ) + 1 ) ) |
80 |
49
|
peano2zd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( 2 x. N ) ) + 1 ) e. ZZ ) |
81 |
|
dvdsmultr2 |
|- ( ( ( A rmX N ) e. ZZ /\ ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ /\ ( ( A rmX ( 2 x. N ) ) + 1 ) e. ZZ ) -> ( ( A rmX N ) || ( ( A rmX ( 2 x. N ) ) + 1 ) -> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) ) ) |
82 |
31 46 80 81
|
syl3anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) || ( ( A rmX ( 2 x. N ) ) + 1 ) -> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) ) ) |
83 |
79 82
|
mpd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) ) |
84 |
46
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. CC ) |
85 |
84
|
mulid1d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. 1 ) = ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) |
86 |
85
|
oveq2d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. 1 ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) |
87 |
49
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX ( 2 x. N ) ) e. CC ) |
88 |
84 87 70
|
adddid |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. 1 ) ) ) |
89 |
50
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) e. CC ) |
90 |
89 84
|
subnegd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) |
91 |
86 88 90
|
3eqtr4d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( ( A rmX ( 2 x. N ) ) + 1 ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) |
92 |
83 91
|
breqtrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) |
93 |
8
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
94 |
29 30 93
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY N ) e. ZZ ) |
95 |
37 94
|
zmulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. ( A rmY N ) ) e. ZZ ) |
96 |
|
dvdsmul2 |
|- ( ( ( 2 x. ( A rmY N ) ) e. ZZ /\ ( A rmX N ) e. ZZ ) -> ( A rmX N ) || ( ( 2 x. ( A rmY N ) ) x. ( A rmX N ) ) ) |
97 |
95 31 96
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( 2 x. ( A rmY N ) ) x. ( A rmX N ) ) ) |
98 |
|
rmydbl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( 2 x. N ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) ) |
99 |
29 30 98
|
syl2anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( 2 x. N ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) ) |
100 |
94
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY N ) e. CC ) |
101 |
65 67 100
|
mul32d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) = ( ( 2 x. ( A rmY N ) ) x. ( A rmX N ) ) ) |
102 |
99 101
|
eqtrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( 2 x. N ) ) = ( ( 2 x. ( A rmY N ) ) x. ( A rmX N ) ) ) |
103 |
97 102
|
breqtrrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( A rmY ( 2 x. N ) ) ) |
104 |
|
dvdsmultr2 |
|- ( ( ( A rmX N ) e. ZZ /\ ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ /\ ( A rmY ( 2 x. N ) ) e. ZZ ) -> ( ( A rmX N ) || ( A rmY ( 2 x. N ) ) -> ( A rmX N ) || ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) ) |
105 |
31 55 57 104
|
syl3anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) || ( A rmY ( 2 x. N ) ) -> ( A rmX N ) || ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) ) |
106 |
103 105
|
mpd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) |
107 |
31 52 58 92 106
|
dvds2addd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) ) |
108 |
34
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> b e. CC ) |
109 |
38
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 2 x. N ) e. CC ) |
110 |
108 70 109
|
adddird |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( b + 1 ) x. ( 2 x. N ) ) = ( ( b x. ( 2 x. N ) ) + ( 1 x. ( 2 x. N ) ) ) ) |
111 |
110
|
oveq2d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) = ( M + ( ( b x. ( 2 x. N ) ) + ( 1 x. ( 2 x. N ) ) ) ) ) |
112 |
32
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> M e. CC ) |
113 |
43
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( b x. ( 2 x. N ) ) e. CC ) |
114 |
|
1zzd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> 1 e. ZZ ) |
115 |
114 38
|
zmulcld |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 1 x. ( 2 x. N ) ) e. ZZ ) |
116 |
115
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 1 x. ( 2 x. N ) ) e. CC ) |
117 |
112 113 116
|
addassd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( M + ( b x. ( 2 x. N ) ) ) + ( 1 x. ( 2 x. N ) ) ) = ( M + ( ( b x. ( 2 x. N ) ) + ( 1 x. ( 2 x. N ) ) ) ) ) |
118 |
109
|
mulid2d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( 1 x. ( 2 x. N ) ) = ( 2 x. N ) ) |
119 |
118
|
oveq2d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( M + ( b x. ( 2 x. N ) ) ) + ( 1 x. ( 2 x. N ) ) ) = ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) ) |
120 |
111 117 119
|
3eqtr2d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) = ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) ) |
121 |
120
|
oveq2d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) = ( A rmY ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) ) ) |
122 |
|
rmyadd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M + ( b x. ( 2 x. N ) ) ) e. ZZ /\ ( 2 x. N ) e. ZZ ) -> ( A rmY ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) ) |
123 |
29 44 38 122
|
syl3anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( ( M + ( b x. ( 2 x. N ) ) ) + ( 2 x. N ) ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) ) |
124 |
121 123
|
eqtrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) = ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) ) |
125 |
124
|
oveq1d |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) = ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) |
126 |
58
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) e. CC ) |
127 |
51
|
zcnd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. CC ) |
128 |
89 126 127
|
addsubd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) = ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) ) |
129 |
125 128
|
eqtrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) = ( ( ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmX ( 2 x. N ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) + ( ( A rmX ( M + ( b x. ( 2 x. N ) ) ) ) x. ( A rmY ( 2 x. N ) ) ) ) ) |
130 |
107 129
|
breqtrrd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) |
131 |
130
|
olcd |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) ) |
132 |
|
jm2.25lem1 |
|- ( ( ( ( A rmX N ) e. ZZ /\ ( A rmY M ) e. ZZ ) /\ ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) e. ZZ /\ ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) e. ZZ ) /\ ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) |
133 |
31 33 42 46 131 132
|
syl221anc |
|- ( ( b e. ZZ /\ ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) |
134 |
133
|
pm5.74da |
|- ( b e. ZZ -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) ) |
135 |
|
oveq1 |
|- ( a = b -> ( a x. ( 2 x. N ) ) = ( b x. ( 2 x. N ) ) ) |
136 |
135
|
oveq2d |
|- ( a = b -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( b x. ( 2 x. N ) ) ) ) |
137 |
136
|
oveq2d |
|- ( a = b -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) ) |
138 |
137
|
oveq1d |
|- ( a = b -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) |
139 |
138
|
breq2d |
|- ( a = b -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) ) |
140 |
137
|
oveq1d |
|- ( a = b -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) = ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) |
141 |
140
|
breq2d |
|- ( a = b -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
142 |
139 141
|
orbi12d |
|- ( a = b -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) |
143 |
142
|
imbi2d |
|- ( a = b -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( b x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) ) |
144 |
|
oveq1 |
|- ( a = ( b + 1 ) -> ( a x. ( 2 x. N ) ) = ( ( b + 1 ) x. ( 2 x. N ) ) ) |
145 |
144
|
oveq2d |
|- ( a = ( b + 1 ) -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) |
146 |
145
|
oveq2d |
|- ( a = ( b + 1 ) -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) ) |
147 |
146
|
oveq1d |
|- ( a = ( b + 1 ) -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) |
148 |
147
|
breq2d |
|- ( a = ( b + 1 ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) ) |
149 |
146
|
oveq1d |
|- ( a = ( b + 1 ) -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) = ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) |
150 |
149
|
breq2d |
|- ( a = ( b + 1 ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
151 |
148 150
|
orbi12d |
|- ( a = ( b + 1 ) -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) |
152 |
151
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( ( b + 1 ) x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) ) |
153 |
|
oveq1 |
|- ( a = 0 -> ( a x. ( 2 x. N ) ) = ( 0 x. ( 2 x. N ) ) ) |
154 |
153
|
oveq2d |
|- ( a = 0 -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( 0 x. ( 2 x. N ) ) ) ) |
155 |
154
|
oveq2d |
|- ( a = 0 -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) ) |
156 |
155
|
oveq1d |
|- ( a = 0 -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) |
157 |
156
|
breq2d |
|- ( a = 0 -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) ) |
158 |
155
|
oveq1d |
|- ( a = 0 -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) = ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) |
159 |
158
|
breq2d |
|- ( a = 0 -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
160 |
157 159
|
orbi12d |
|- ( a = 0 -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) |
161 |
160
|
imbi2d |
|- ( a = 0 -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) ) |
162 |
|
oveq1 |
|- ( a = I -> ( a x. ( 2 x. N ) ) = ( I x. ( 2 x. N ) ) ) |
163 |
162
|
oveq2d |
|- ( a = I -> ( M + ( a x. ( 2 x. N ) ) ) = ( M + ( I x. ( 2 x. N ) ) ) ) |
164 |
163
|
oveq2d |
|- ( a = I -> ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) = ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) ) |
165 |
164
|
oveq1d |
|- ( a = I -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) = ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) |
166 |
165
|
breq2d |
|- ( a = I -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) ) ) |
167 |
164
|
oveq1d |
|- ( a = I -> ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) = ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) |
168 |
167
|
breq2d |
|- ( a = I -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) <-> ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
169 |
166 168
|
orbi12d |
|- ( a = I -> ( ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) <-> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) |
170 |
169
|
imbi2d |
|- ( a = I -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( a x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) ) |
171 |
134 143 152 161 170
|
zindbi |
|- ( I e. ZZ -> ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( 0 x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) <-> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) ) |
172 |
28 171
|
mpbid |
|- ( I e. ZZ -> ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) ) |
173 |
172
|
impcom |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) ) /\ I e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |
174 |
173
|
3impa |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ N e. ZZ ) /\ I e. ZZ ) -> ( ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY ( M + ( I x. ( 2 x. N ) ) ) ) - -u ( A rmY M ) ) ) ) |