| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. CC ) | 
						
							| 3 | 2 | 2timesd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( 2 x. N ) ) = ( A rmX ( N + N ) ) ) | 
						
							| 5 |  | rmxadd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N e. ZZ ) -> ( A rmX ( N + N ) ) = ( ( ( A rmX N ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) ) | 
						
							| 6 | 5 | 3anidm23 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + N ) ) = ( ( ( A rmX N ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) ) | 
						
							| 7 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 8 | 7 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) | 
						
							| 9 | 8 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) | 
						
							| 10 | 9 | sqcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) ^ 2 ) e. CC ) | 
						
							| 11 |  | rmspecnonsq |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) | 
						
							| 12 | 11 | eldifad |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) | 
						
							| 13 | 12 | nncnd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) | 
						
							| 14 | 13 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. CC ) | 
						
							| 15 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 16 | 15 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) | 
						
							| 17 | 16 | zcnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) | 
						
							| 18 | 17 | sqcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) ^ 2 ) e. CC ) | 
						
							| 19 | 14 18 | mulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) e. CC ) | 
						
							| 20 | 10 10 19 | pnncand |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) ^ 2 ) + ( ( A rmX N ) ^ 2 ) ) - ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) = ( ( ( A rmX N ) ^ 2 ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) | 
						
							| 21 | 10 | 2timesd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmX N ) ^ 2 ) ) = ( ( ( A rmX N ) ^ 2 ) + ( ( A rmX N ) ^ 2 ) ) ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) + ( ( A rmX N ) ^ 2 ) ) = ( 2 x. ( ( A rmX N ) ^ 2 ) ) ) | 
						
							| 23 |  | rmxynorm |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) | 
						
							| 24 | 22 23 | oveq12d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) ^ 2 ) + ( ( A rmX N ) ^ 2 ) ) - ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) ) | 
						
							| 25 | 9 | sqvald |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) ^ 2 ) = ( ( A rmX N ) x. ( A rmX N ) ) ) | 
						
							| 26 | 17 | sqvald |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) ^ 2 ) = ( ( A rmY N ) x. ( A rmY N ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) | 
						
							| 28 | 25 27 | oveq12d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = ( ( ( A rmX N ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) ) | 
						
							| 29 | 20 24 28 | 3eqtr3rd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) ) | 
						
							| 30 | 4 6 29 | 3eqtrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( 2 x. N ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) ) |