Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
2 |
1
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. CC ) |
3 |
2
|
2timesd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. N ) = ( N + N ) ) |
4 |
3
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( 2 x. N ) ) = ( A rmX ( N + N ) ) ) |
5 |
|
rmxadd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N e. ZZ ) -> ( A rmX ( N + N ) ) = ( ( ( A rmX N ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) ) |
6 |
5
|
3anidm23 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( N + N ) ) = ( ( ( A rmX N ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) ) |
7 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
8 |
7
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
9 |
8
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
10 |
9
|
sqcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) ^ 2 ) e. CC ) |
11 |
|
rmspecnonsq |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) |
12 |
11
|
eldifad |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) |
13 |
12
|
nncnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
14 |
13
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A ^ 2 ) - 1 ) e. CC ) |
15 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
16 |
15
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
17 |
16
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
18 |
17
|
sqcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) ^ 2 ) e. CC ) |
19 |
14 18
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) e. CC ) |
20 |
10 10 19
|
pnncand |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) ^ 2 ) + ( ( A rmX N ) ^ 2 ) ) - ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) = ( ( ( A rmX N ) ^ 2 ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) |
21 |
10
|
2timesd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmX N ) ^ 2 ) ) = ( ( ( A rmX N ) ^ 2 ) + ( ( A rmX N ) ^ 2 ) ) ) |
22 |
21
|
eqcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) + ( ( A rmX N ) ^ 2 ) ) = ( 2 x. ( ( A rmX N ) ^ 2 ) ) ) |
23 |
|
rmxynorm |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = 1 ) |
24 |
22 23
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( ( A rmX N ) ^ 2 ) + ( ( A rmX N ) ^ 2 ) ) - ( ( ( A rmX N ) ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) ) |
25 |
9
|
sqvald |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) ^ 2 ) = ( ( A rmX N ) x. ( A rmX N ) ) ) |
26 |
17
|
sqvald |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) ^ 2 ) = ( ( A rmY N ) x. ( A rmY N ) ) ) |
27 |
26
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) = ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) |
28 |
25 27
|
oveq12d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) ^ 2 ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) ^ 2 ) ) ) = ( ( ( A rmX N ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) ) |
29 |
20 24 28
|
3eqtr3rd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) x. ( A rmX N ) ) + ( ( ( A ^ 2 ) - 1 ) x. ( ( A rmY N ) x. ( A rmY N ) ) ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) ) |
30 |
4 6 29
|
3eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX ( 2 x. N ) ) = ( ( 2 x. ( ( A rmX N ) ^ 2 ) ) - 1 ) ) |