Metamath Proof Explorer


Theorem rmxdbl

Description: "Double-angle formula" for X-values. Equation 2.13 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion rmxdbl A2NAXrm2 N=2AXrmN21

Proof

Step Hyp Ref Expression
1 zcn NN
2 1 adantl A2NN
3 2 2timesd A2N2 N=N+N
4 3 oveq2d A2NAXrm2 N=AXrmN+N
5 rmxadd A2NNAXrmN+N=AXrmNAXrmN+A21AYrmNAYrmN
6 5 3anidm23 A2NAXrmN+N=AXrmNAXrmN+A21AYrmNAYrmN
7 frmx Xrm:2×0
8 7 fovcl A2NAXrmN0
9 8 nn0cnd A2NAXrmN
10 9 sqcld A2NAXrmN2
11 rmspecnonsq A2A21
12 11 eldifad A2A21
13 12 nncnd A2A21
14 13 adantr A2NA21
15 frmy Yrm:2×
16 15 fovcl A2NAYrmN
17 16 zcnd A2NAYrmN
18 17 sqcld A2NAYrmN2
19 14 18 mulcld A2NA21AYrmN2
20 10 10 19 pnncand A2NAXrmN2+AXrmN2-AXrmN2A21AYrmN2=AXrmN2+A21AYrmN2
21 10 2timesd A2N2AXrmN2=AXrmN2+AXrmN2
22 21 eqcomd A2NAXrmN2+AXrmN2=2AXrmN2
23 rmxynorm A2NAXrmN2A21AYrmN2=1
24 22 23 oveq12d A2NAXrmN2+AXrmN2-AXrmN2A21AYrmN2=2AXrmN21
25 9 sqvald A2NAXrmN2=AXrmNAXrmN
26 17 sqvald A2NAYrmN2=AYrmNAYrmN
27 26 oveq2d A2NA21AYrmN2=A21AYrmNAYrmN
28 25 27 oveq12d A2NAXrmN2+A21AYrmN2=AXrmNAXrmN+A21AYrmNAYrmN
29 20 24 28 3eqtr3rd A2NAXrmNAXrmN+A21AYrmNAYrmN=2AXrmN21
30 4 6 29 3eqtrd A2NAXrm2 N=2AXrmN21