Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|
2 |
|
simplr |
|
3 |
|
zmulcl |
|
4 |
1 2 3
|
sylancr |
|
5 |
|
zsubcl |
|
6 |
5
|
adantl |
|
7 |
|
divides |
|
8 |
4 6 7
|
syl2anc |
|
9 |
|
simplll |
|
10 |
|
simplrr |
|
11 |
|
simpllr |
|
12 |
|
simpr |
|
13 |
|
jm2.25 |
|
14 |
9 10 11 12 13
|
syl121anc |
|
15 |
14
|
adantr |
|
16 |
|
oveq2 |
|
17 |
16
|
oveq2d |
|
18 |
|
zcn |
|
19 |
|
zcn |
|
20 |
|
pncan3 |
|
21 |
18 19 20
|
syl2anr |
|
22 |
21
|
ad2antlr |
|
23 |
22
|
oveq2d |
|
24 |
17 23
|
sylan9eqr |
|
25 |
|
eqidd |
|
26 |
24 25
|
acongeq12d |
|
27 |
15 26
|
mpbid |
|
28 |
27
|
rexlimdva2 |
|
29 |
8 28
|
sylbid |
|
30 |
|
simprl |
|
31 |
|
znegcl |
|
32 |
31
|
ad2antll |
|
33 |
30 32
|
zsubcld |
|
34 |
|
divides |
|
35 |
4 33 34
|
syl2anc |
|
36 |
|
frmx |
|
37 |
36
|
fovcl |
|
38 |
37
|
nn0zd |
|
39 |
9 11 38
|
syl2anc |
|
40 |
|
simplrl |
|
41 |
|
frmy |
|
42 |
41
|
fovcl |
|
43 |
9 40 42
|
syl2anc |
|
44 |
41
|
fovcl |
|
45 |
9 10 44
|
syl2anc |
|
46 |
39 43 45
|
3jca |
|
47 |
46
|
adantr |
|
48 |
32
|
adantr |
|
49 |
|
jm2.25 |
|
50 |
9 48 11 12 49
|
syl121anc |
|
51 |
50
|
adantr |
|
52 |
|
oveq2 |
|
53 |
52
|
oveq2d |
|
54 |
18
|
negcld |
|
55 |
|
pncan3 |
|
56 |
54 19 55
|
syl2anr |
|
57 |
56
|
ad2antlr |
|
58 |
57
|
oveq2d |
|
59 |
53 58
|
sylan9eqr |
|
60 |
|
rmyneg |
|
61 |
9 10 60
|
syl2anc |
|
62 |
61
|
adantr |
|
63 |
59 62
|
acongeq12d |
|
64 |
51 63
|
mpbid |
|
65 |
|
acongneg2 |
|
66 |
47 64 65
|
syl2anc |
|
67 |
66
|
rexlimdva2 |
|
68 |
35 67
|
sylbid |
|
69 |
29 68
|
jaod |
|