Step |
Hyp |
Ref |
Expression |
1 |
|
simplll |
|
2 |
|
elfzelz |
|
3 |
2
|
adantr |
|
4 |
3
|
ad2antlr |
|
5 |
|
rmyabs |
|
6 |
1 4 5
|
syl2anc |
|
7 |
3
|
zred |
|
8 |
7
|
ad2antlr |
|
9 |
|
elfzle1 |
|
10 |
9
|
adantr |
|
11 |
10
|
ad2antlr |
|
12 |
8 11
|
absidd |
|
13 |
12
|
oveq2d |
|
14 |
6 13
|
eqtrd |
|
15 |
|
elfzelz |
|
16 |
15
|
adantl |
|
17 |
16
|
ad2antlr |
|
18 |
|
rmyabs |
|
19 |
1 17 18
|
syl2anc |
|
20 |
16
|
zred |
|
21 |
20
|
ad2antlr |
|
22 |
|
elfzle1 |
|
23 |
22
|
adantl |
|
24 |
23
|
ad2antlr |
|
25 |
21 24
|
absidd |
|
26 |
25
|
oveq2d |
|
27 |
19 26
|
eqtrd |
|
28 |
14 27
|
oveq12d |
|
29 |
|
frmy |
|
30 |
29
|
fovcl |
|
31 |
1 4 30
|
syl2anc |
|
32 |
31
|
zred |
|
33 |
29
|
fovcl |
|
34 |
1 17 33
|
syl2anc |
|
35 |
34
|
zred |
|
36 |
32 35
|
readdcld |
|
37 |
|
simpllr |
|
38 |
37
|
nnzd |
|
39 |
|
peano2zm |
|
40 |
38 39
|
syl |
|
41 |
29
|
fovcl |
|
42 |
1 40 41
|
syl2anc |
|
43 |
42
|
zred |
|
44 |
29
|
fovcl |
|
45 |
1 38 44
|
syl2anc |
|
46 |
45
|
zred |
|
47 |
43 46
|
readdcld |
|
48 |
|
frmx |
|
49 |
48
|
fovcl |
|
50 |
1 38 49
|
syl2anc |
|
51 |
50
|
nn0red |
|
52 |
|
elfzle2 |
|
53 |
52
|
adantl |
|
54 |
|
lermy |
|
55 |
1 4 40 54
|
syl3anc |
|
56 |
55
|
adantr |
|
57 |
53 56
|
mpbid |
|
58 |
|
simplrr |
|
59 |
|
elfzle2 |
|
60 |
58 59
|
syl |
|
61 |
|
lermy |
|
62 |
1 17 38 61
|
syl3anc |
|
63 |
60 62
|
mpbid |
|
64 |
63
|
adantr |
|
65 |
|
le2add |
|
66 |
32 35 43 46 65
|
syl22anc |
|
67 |
66
|
adantr |
|
68 |
57 64 67
|
mp2and |
|
69 |
31
|
zcnd |
|
70 |
34
|
zcnd |
|
71 |
69 70
|
addcomd |
|
72 |
71
|
adantr |
|
73 |
|
id |
|
74 |
73
|
necomd |
|
75 |
74
|
adantr |
|
76 |
|
simpr |
|
77 |
75 76
|
neeqtrd |
|
78 |
77
|
neneqd |
|
79 |
78
|
adantll |
|
80 |
|
nnnn0 |
|
81 |
|
nn0uz |
|
82 |
80 81
|
eleqtrdi |
|
83 |
82
|
ad4antlr |
|
84 |
|
simprr |
|
85 |
84
|
ad2antrr |
|
86 |
|
fzm1 |
|
87 |
86
|
biimpa |
|
88 |
83 85 87
|
syl2anc |
|
89 |
|
orel2 |
|
90 |
79 88 89
|
sylc |
|
91 |
|
elfzle2 |
|
92 |
90 91
|
syl |
|
93 |
|
lermy |
|
94 |
1 17 40 93
|
syl3anc |
|
95 |
94
|
adantr |
|
96 |
92 95
|
mpbid |
|
97 |
|
simplrl |
|
98 |
|
elfzle2 |
|
99 |
97 98
|
syl |
|
100 |
|
lermy |
|
101 |
1 4 38 100
|
syl3anc |
|
102 |
99 101
|
mpbid |
|
103 |
102
|
adantr |
|
104 |
|
le2add |
|
105 |
35 32 43 46 104
|
syl22anc |
|
106 |
105
|
adantr |
|
107 |
96 103 106
|
mp2and |
|
108 |
72 107
|
eqbrtrd |
|
109 |
37
|
nnnn0d |
|
110 |
109 81
|
eleqtrdi |
|
111 |
|
fzm1 |
|
112 |
111
|
biimpa |
|
113 |
110 97 112
|
syl2anc |
|
114 |
68 108 113
|
mpjaodan |
|
115 |
|
jm2.24 |
|
116 |
1 38 115
|
syl2anc |
|
117 |
36 47 51 114 116
|
lelttrd |
|
118 |
28 117
|
eqbrtrd |
|
119 |
|
simpr |
|
120 |
|
rmyeq |
|
121 |
120
|
necon3bid |
|
122 |
1 4 17 121
|
syl3anc |
|
123 |
119 122
|
mpbid |
|
124 |
7
|
ad2antlr |
|
125 |
|
0red |
|
126 |
|
simpr |
|
127 |
22
|
ad2antll |
|
128 |
20
|
adantl |
|
129 |
128
|
le0neg2d |
|
130 |
127 129
|
mpbid |
|
131 |
130
|
adantr |
|
132 |
126 131
|
eqbrtrd |
|
133 |
10
|
ad2antlr |
|
134 |
|
letri3 |
|
135 |
134
|
biimpar |
|
136 |
124 125 132 133 135
|
syl22anc |
|
137 |
|
simpr |
|
138 |
|
simplr |
|
139 |
138 137
|
eqtr3d |
|
140 |
128
|
recnd |
|
141 |
140
|
ad2antrr |
|
142 |
141
|
negeq0d |
|
143 |
139 142
|
mpbird |
|
144 |
137 143
|
eqtr4d |
|
145 |
136 144
|
mpdan |
|
146 |
145
|
ex |
|
147 |
146
|
necon3d |
|
148 |
147
|
imp |
|
149 |
58 15
|
syl |
|
150 |
149
|
znegcld |
|
151 |
|
rmyeq |
|
152 |
151
|
necon3bid |
|
153 |
1 4 150 152
|
syl3anc |
|
154 |
148 153
|
mpbid |
|
155 |
|
rmyneg |
|
156 |
1 17 155
|
syl2anc |
|
157 |
154 156
|
neeqtrd |
|
158 |
118 123 157
|
3jca |
|
159 |
158
|
ex |
|
160 |
|
simplll |
|
161 |
3
|
ad2antlr |
|
162 |
160 161 30
|
syl2anc |
|
163 |
162
|
zcnd |
|
164 |
16
|
ad2antlr |
|
165 |
160 164 33
|
syl2anc |
|
166 |
165
|
zcnd |
|
167 |
163 166
|
negsubd |
|
168 |
167
|
fveq2d |
|
169 |
166
|
negcld |
|
170 |
163 169
|
addcld |
|
171 |
170
|
abscld |
|
172 |
163
|
abscld |
|
173 |
166
|
abscld |
|
174 |
172 173
|
readdcld |
|
175 |
|
nnz |
|
176 |
175
|
adantl |
|
177 |
176
|
ad2antrr |
|
178 |
49
|
nn0zd |
|
179 |
160 177 178
|
syl2anc |
|
180 |
179
|
zred |
|
181 |
163 169
|
abstrid |
|
182 |
|
absneg |
|
183 |
182
|
eqcomd |
|
184 |
166 183
|
syl |
|
185 |
184
|
oveq2d |
|
186 |
181 185
|
breqtrrd |
|
187 |
|
simpr1 |
|
188 |
171 174 180 186 187
|
lelttrd |
|
189 |
168 188
|
eqbrtrrd |
|
190 |
162 165
|
zsubcld |
|
191 |
190
|
zcnd |
|
192 |
191
|
abscld |
|
193 |
192 180
|
ltnled |
|
194 |
189 193
|
mpbid |
|
195 |
|
simpr2 |
|
196 |
163 166 195
|
subne0d |
|
197 |
|
dvdsleabs |
|
198 |
179 190 196 197
|
syl3anc |
|
199 |
194 198
|
mtod |
|
200 |
163 166
|
subnegd |
|
201 |
200
|
fveq2d |
|
202 |
163 166
|
addcld |
|
203 |
202
|
abscld |
|
204 |
163 166
|
abstrid |
|
205 |
203 174 180 204 187
|
lelttrd |
|
206 |
201 205
|
eqbrtrd |
|
207 |
165
|
znegcld |
|
208 |
162 207
|
zsubcld |
|
209 |
208
|
zcnd |
|
210 |
209
|
abscld |
|
211 |
210 180
|
ltnled |
|
212 |
206 211
|
mpbid |
|
213 |
|
simpr3 |
|
214 |
163 169 213
|
subne0d |
|
215 |
|
dvdsleabs |
|
216 |
179 208 214 215
|
syl3anc |
|
217 |
212 216
|
mtod |
|
218 |
199 217
|
jca |
|
219 |
|
pm4.56 |
|
220 |
218 219
|
sylib |
|
221 |
220
|
ex |
|
222 |
159 221
|
syld |
|
223 |
222
|
necon4ad |
|
224 |
223
|
3impia |
|