Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
|
peano2zm |
|
3 |
2
|
ad2antlr |
|
4 |
|
frmy |
|
5 |
4
|
fovcl |
|
6 |
1 3 5
|
syl2anc |
|
7 |
6
|
zred |
|
8 |
4
|
fovcl |
|
9 |
8
|
zred |
|
10 |
9
|
adantr |
|
11 |
7 10
|
readdcld |
|
12 |
|
0red |
|
13 |
|
frmx |
|
14 |
13
|
fovcl |
|
15 |
14
|
adantr |
|
16 |
15
|
nn0red |
|
17 |
|
znegcl |
|
18 |
17
|
ad2antlr |
|
19 |
18
|
peano2zd |
|
20 |
4
|
fovcl |
|
21 |
1 19 20
|
syl2anc |
|
22 |
21
|
zred |
|
23 |
4
|
fovcl |
|
24 |
1 18 23
|
syl2anc |
|
25 |
24
|
zred |
|
26 |
|
rmy0 |
|
27 |
26
|
ad2antrr |
|
28 |
|
simpr |
|
29 |
|
zre |
|
30 |
29
|
ad2antlr |
|
31 |
30
|
le0neg1d |
|
32 |
28 31
|
mpbid |
|
33 |
|
0zd |
|
34 |
|
zleltp1 |
|
35 |
33 18 34
|
syl2anc |
|
36 |
32 35
|
mpbid |
|
37 |
|
ltrmy |
|
38 |
1 33 19 37
|
syl3anc |
|
39 |
36 38
|
mpbid |
|
40 |
27 39
|
eqbrtrrd |
|
41 |
|
lermy |
|
42 |
1 33 18 41
|
syl3anc |
|
43 |
32 42
|
mpbid |
|
44 |
27 43
|
eqbrtrrd |
|
45 |
22 25 40 44
|
addgtge0d |
|
46 |
7
|
recnd |
|
47 |
10
|
recnd |
|
48 |
46 47
|
negdid |
|
49 |
|
rmyneg |
|
50 |
1 3 49
|
syl2anc |
|
51 |
|
rmyneg |
|
52 |
51
|
adantr |
|
53 |
50 52
|
oveq12d |
|
54 |
|
zcn |
|
55 |
54
|
ad2antlr |
|
56 |
|
ax-1cn |
|
57 |
|
negsubdi |
|
58 |
55 56 57
|
sylancl |
|
59 |
58
|
oveq2d |
|
60 |
59
|
oveq1d |
|
61 |
48 53 60
|
3eqtr2d |
|
62 |
45 61
|
breqtrrd |
|
63 |
11
|
lt0neg1d |
|
64 |
62 63
|
mpbird |
|
65 |
15
|
nn0ge0d |
|
66 |
11 12 16 64 65
|
ltletrd |
|
67 |
|
simpll |
|
68 |
|
elnnz |
|
69 |
68
|
biimpri |
|
70 |
69
|
adantll |
|
71 |
|
jm2.24nn |
|
72 |
67 70 71
|
syl2anc |
|
73 |
29
|
adantl |
|
74 |
|
0re |
|
75 |
|
lelttric |
|
76 |
73 74 75
|
sylancl |
|
77 |
66 72 76
|
mpjaodan |
|