Metamath Proof Explorer


Theorem gricrel

Description: The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025)

Ref Expression
Assertion gricrel Rel ≃𝑔𝑟

Proof

Step Hyp Ref Expression
1 df-gric 𝑔𝑟 = ( GraphIso “ ( V ∖ 1o ) )
2 cnvimass ( GraphIso “ ( V ∖ 1o ) ) ⊆ dom GraphIso
3 grimfn GraphIso Fn ( V × V )
4 3 fndmi dom GraphIso = ( V × V )
5 2 4 sseqtri ( GraphIso “ ( V ∖ 1o ) ) ⊆ ( V × V )
6 1 5 eqsstri 𝑔𝑟 ⊆ ( V × V )
7 relxp Rel ( V × V )
8 relss ( ≃𝑔𝑟 ⊆ ( V × V ) → ( Rel ( V × V ) → Rel ≃𝑔𝑟 ) )
9 6 7 8 mp2 Rel ≃𝑔𝑟