Metamath Proof Explorer


Theorem gricrel

Description: The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025)

Ref Expression
Assertion gricrel Rel 𝑔𝑟

Proof

Step Hyp Ref Expression
1 df-gric 𝑔𝑟 = GraphIso -1 V 1 𝑜
2 cnvimass GraphIso -1 V 1 𝑜 dom GraphIso
3 grimfn GraphIso Fn V × V
4 3 fndmi dom GraphIso = V × V
5 2 4 sseqtri GraphIso -1 V 1 𝑜 V × V
6 1 5 eqsstri 𝑔𝑟 V × V
7 relxp Rel V × V
8 relss 𝑔𝑟 V × V Rel V × V Rel 𝑔𝑟
9 6 7 8 mp2 Rel 𝑔𝑟