Description: The "is isomorphic to" relation for graphs is a relation. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricrel | |- Rel ~=gr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gric | |- ~=gr = ( `' GraphIso " ( _V \ 1o ) ) |
|
| 2 | cnvimass | |- ( `' GraphIso " ( _V \ 1o ) ) C_ dom GraphIso |
|
| 3 | grimfn | |- GraphIso Fn ( _V X. _V ) |
|
| 4 | 3 | fndmi | |- dom GraphIso = ( _V X. _V ) |
| 5 | 2 4 | sseqtri | |- ( `' GraphIso " ( _V \ 1o ) ) C_ ( _V X. _V ) |
| 6 | 1 5 | eqsstri | |- ~=gr C_ ( _V X. _V ) |
| 7 | relxp | |- Rel ( _V X. _V ) |
|
| 8 | relss | |- ( ~=gr C_ ( _V X. _V ) -> ( Rel ( _V X. _V ) -> Rel ~=gr ) ) |
|
| 9 | 6 7 8 | mp2 | |- Rel ~=gr |