| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpoinveu.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | grpoinveu.2 | ⊢ 𝑈  =  ( GId ‘ 𝐺 ) | 
						
							| 3 | 1 2 | grpoidinv2 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ( ( 𝑈 𝐺 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐺 𝑈 )  =  𝐴 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  →  ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 5 | 4 | reximi | ⊢ ( ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 )  →  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( ( 𝑈 𝐺 𝐴 )  =  𝐴  ∧  ( 𝐴 𝐺 𝑈 )  =  𝐴 )  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝐴 𝐺 𝑦 )  =  𝑈 ) )  →  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 7 | 3 6 | syl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) | 
						
							| 8 |  | eqtr3 | ⊢ ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝑧 𝐺 𝐴 )  =  𝑈 )  →  ( 𝑦 𝐺 𝐴 )  =  ( 𝑧 𝐺 𝐴 ) ) | 
						
							| 9 | 1 | grporcan | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑦 𝐺 𝐴 )  =  ( 𝑧 𝐺 𝐴 )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 10 | 8 9 | imbitrid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝑧 𝐺 𝐴 )  =  𝑈 )  →  𝑦  =  𝑧 ) ) | 
						
							| 11 | 10 | 3exp2 | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝑦  ∈  𝑋  →  ( 𝑧  ∈  𝑋  →  ( 𝐴  ∈  𝑋  →  ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝑧 𝐺 𝐴 )  =  𝑈 )  →  𝑦  =  𝑧 ) ) ) ) ) | 
						
							| 12 | 11 | com24 | ⊢ ( 𝐺  ∈  GrpOp  →  ( 𝐴  ∈  𝑋  →  ( 𝑧  ∈  𝑋  →  ( 𝑦  ∈  𝑋  →  ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝑧 𝐺 𝐴 )  =  𝑈 )  →  𝑦  =  𝑧 ) ) ) ) ) | 
						
							| 13 | 12 | imp41 | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑧  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝑧 𝐺 𝐴 )  =  𝑈 )  →  𝑦  =  𝑧 ) ) | 
						
							| 14 | 13 | an32s | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  ∈  𝑋 )  →  ( ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ( 𝑧 𝐺 𝐴 )  =  𝑈 )  →  𝑦  =  𝑧 ) ) | 
						
							| 15 | 14 | expd | ⊢ ( ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑧  ∈  𝑋 )  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ( ( 𝑧 𝐺 𝐴 )  =  𝑈  →  𝑦  =  𝑧 ) ) ) | 
						
							| 16 | 15 | ralrimdva | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ∀ 𝑧  ∈  𝑋 ( ( 𝑧 𝐺 𝐴 )  =  𝑈  →  𝑦  =  𝑧 ) ) ) | 
						
							| 17 | 16 | ancld | ⊢ ( ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑧 𝐺 𝐴 )  =  𝑈  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 18 | 17 | reximdva | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑧 𝐺 𝐴 )  =  𝑈  →  𝑦  =  𝑧 ) ) ) ) | 
						
							| 19 | 7 18 | mpd | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑧 𝐺 𝐴 )  =  𝑈  →  𝑦  =  𝑧 ) ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦 𝐺 𝐴 )  =  ( 𝑧 𝐺 𝐴 ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ↔  ( 𝑧 𝐺 𝐴 )  =  𝑈 ) ) | 
						
							| 22 | 21 | reu8 | ⊢ ( ∃! 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈  ↔  ∃ 𝑦  ∈  𝑋 ( ( 𝑦 𝐺 𝐴 )  =  𝑈  ∧  ∀ 𝑧  ∈  𝑋 ( ( 𝑧 𝐺 𝐴 )  =  𝑈  →  𝑦  =  𝑧 ) ) ) | 
						
							| 23 | 19 22 | sylibr | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ∃! 𝑦  ∈  𝑋 ( 𝑦 𝐺 𝐴 )  =  𝑈 ) |