| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinv.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
grpinv.2 |
⊢ 𝑈 = ( GId ‘ 𝐺 ) |
| 3 |
|
grpinv.3 |
⊢ 𝑁 = ( inv ‘ 𝐺 ) |
| 4 |
|
oveq1 |
⊢ ( ( 𝑁 ‘ 𝐴 ) = 𝐵 → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = ( 𝐵 𝐺 𝐴 ) ) |
| 5 |
4
|
adantl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = ( 𝐵 𝐺 𝐴 ) ) |
| 6 |
1 2 3
|
grpolinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ) |
| 9 |
5 8
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑁 ‘ 𝐴 ) = 𝐵 ) → ( 𝐵 𝐺 𝐴 ) = 𝑈 ) |
| 10 |
1 3
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| 11 |
1 2
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) → ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 12 |
10 11
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 14 |
13
|
eqcomd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐵 𝐺 𝐴 ) = 𝑈 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 16 |
|
oveq1 |
⊢ ( ( 𝐵 𝐺 𝐴 ) = 𝑈 → ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐵 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝑈 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) |
| 18 |
|
simprr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
| 19 |
|
simprl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 20 |
10
|
adantrr |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| 21 |
18 19 20
|
3jca |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) ) |
| 22 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) |
| 23 |
21 22
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) |
| 24 |
23
|
3impb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) ) |
| 25 |
1 2 3
|
grporinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
| 26 |
25
|
oveq2d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( 𝐵 𝐺 𝑈 ) ) |
| 27 |
26
|
3adant3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) ) = ( 𝐵 𝐺 𝑈 ) ) |
| 28 |
1 2
|
grporid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 𝑈 ) = 𝐵 ) |
| 29 |
28
|
3adant2 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐺 𝑈 ) = 𝐵 ) |
| 30 |
24 27 29
|
3eqtrd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝐵 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐵 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝐵 𝐺 𝐴 ) 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝐵 ) |
| 32 |
15 17 31
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐵 𝐺 𝐴 ) = 𝑈 ) → ( 𝑁 ‘ 𝐴 ) = 𝐵 ) |
| 33 |
9 32
|
impbida |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 𝐺 𝐴 ) = 𝑈 ) ) |