Metamath Proof Explorer


Theorem gruwun

Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion gruwun ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝑈 ∈ WUni )

Proof

Step Hyp Ref Expression
1 grutr ( 𝑈 ∈ Univ → Tr 𝑈 )
2 1 adantr ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → Tr 𝑈 )
3 simpr ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝑈 ≠ ∅ )
4 gruuni ( ( 𝑈 ∈ Univ ∧ 𝑥𝑈 ) → 𝑥𝑈 )
5 4 adantlr ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → 𝑥𝑈 )
6 grupw ( ( 𝑈 ∈ Univ ∧ 𝑥𝑈 ) → 𝒫 𝑥𝑈 )
7 6 adantlr ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → 𝒫 𝑥𝑈 )
8 grupr ( ( 𝑈 ∈ Univ ∧ 𝑥𝑈𝑦𝑈 ) → { 𝑥 , 𝑦 } ∈ 𝑈 )
9 8 ad4ant134 ( ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) ∧ 𝑦𝑈 ) → { 𝑥 , 𝑦 } ∈ 𝑈 )
10 9 ralrimiva ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 )
11 5 7 10 3jca ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥𝑈 ) → ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) )
12 11 ralrimiva ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) )
13 iswun ( 𝑈 ∈ Univ → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )
14 13 adantr ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )
15 2 3 12 14 mpbir3and ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝑈 ∈ WUni )