Step |
Hyp |
Ref |
Expression |
1 |
|
hashun |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
2 |
1
|
3expa |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
3 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
4 |
3
|
nn0red |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
6 |
5
|
nn0red |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
7 |
4 6
|
anim12i |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) ) |
9 |
|
rexadd |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
11 |
10
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
12 |
2 11
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
13 |
12
|
expcom |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
15 |
|
unexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
16 |
|
unfir |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) |
17 |
16
|
con3i |
⊢ ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ¬ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
18 |
|
hashinf |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ V ∧ ¬ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = +∞ ) |
19 |
15 17 18
|
syl2anr |
⊢ ( ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = +∞ ) |
20 |
|
ianor |
⊢ ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ↔ ( ¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin ) ) |
21 |
|
simprl |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → 𝐴 ∈ 𝑉 ) |
22 |
|
simprr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → 𝐵 ∈ 𝑊 ) |
23 |
|
hashnfinnn0 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) |
24 |
23
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) ) |
26 |
25
|
impcom |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) |
27 |
|
hashinfxadd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
28 |
21 22 26 27
|
syl3anc |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
29 |
28
|
eqcomd |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
30 |
29
|
ex |
⊢ ( ¬ 𝐴 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
31 |
|
hashxrcl |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
32 |
|
hashxrcl |
⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
33 |
31 32
|
anim12i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ* ) ) |
34 |
33
|
adantl |
⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ* ) ) |
35 |
|
xaddcom |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ* ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐵 ) +𝑒 ( ♯ ‘ 𝐴 ) ) ) |
36 |
34 35
|
syl |
⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐵 ) +𝑒 ( ♯ ‘ 𝐴 ) ) ) |
37 |
|
simprr |
⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → 𝐵 ∈ 𝑊 ) |
38 |
|
simprl |
⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → 𝐴 ∈ 𝑉 ) |
39 |
|
hashnfinnn0 |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) |
40 |
39
|
ex |
⊢ ( 𝐵 ∈ 𝑊 → ( ¬ 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) ) |
42 |
41
|
impcom |
⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) |
43 |
|
hashinfxadd |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐵 ) +𝑒 ( ♯ ‘ 𝐴 ) ) = +∞ ) |
44 |
37 38 42 43
|
syl3anc |
⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐵 ) +𝑒 ( ♯ ‘ 𝐴 ) ) = +∞ ) |
45 |
36 44
|
eqtrd |
⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
46 |
45
|
eqcomd |
⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
47 |
46
|
ex |
⊢ ( ¬ 𝐵 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
48 |
30 47
|
jaoi |
⊢ ( ( ¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
49 |
20 48
|
sylbi |
⊢ ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
50 |
49
|
imp |
⊢ ( ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
51 |
19 50
|
eqtrd |
⊢ ( ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
52 |
51
|
expcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
53 |
52
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
54 |
14 53
|
pm2.61d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |