| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hba1 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 2 |  | hba1 | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑦 ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 3 |  | alcom | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 4 | 3 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ∀ 𝑦 ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 5 | 2 3 4 | 3imtr4i | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑦 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 6 |  | idn1 | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ) | 
						
							| 7 |  | ax-11 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 8 | 6 7 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )    ) | 
						
							| 9 |  | sp | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 10 | 8 9 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )    ) | 
						
							| 11 |  | hbntal | ⊢ ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 ) ) | 
						
							| 12 | 10 11 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑥 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 )    ) | 
						
							| 13 | 5 12 | gen11nv | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑦 ∀ 𝑥 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 )    ) | 
						
							| 14 |  | ax-11 | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 )  →  ∀ 𝑥 ∀ 𝑦 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 ) ) | 
						
							| 15 | 13 14 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑥 ∀ 𝑦 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 )    ) | 
						
							| 16 |  | sp | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 )  →  ∀ 𝑦 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 ) ) | 
						
							| 17 | 15 16 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑦 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 )    ) | 
						
							| 18 |  | hbalg | ⊢ ( ∀ 𝑦 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 )  →  ∀ 𝑦 ( ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 ) ) | 
						
							| 19 | 17 18 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑦 ( ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 )    ) | 
						
							| 20 |  | sp | ⊢ ( ∀ 𝑦 ( ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 )  →  ( ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 ) ) | 
						
							| 21 | 19 20 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ( ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 )    ) | 
						
							| 22 | 1 21 | gen11nv | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑥 ( ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 )    ) | 
						
							| 23 |  | hbntal | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ∀ 𝑦 ¬  𝜑 )  →  ∀ 𝑥 ( ¬  ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 ) ) | 
						
							| 24 | 22 23 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑥 ( ¬  ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )    ) | 
						
							| 25 |  | sp | ⊢ ( ∀ 𝑥 ( ¬  ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )  →  ( ¬  ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 ) ) | 
						
							| 26 | 24 25 | e1a | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ( ¬  ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )    ) | 
						
							| 27 |  | df-ex | ⊢ ( ∃ 𝑦 𝜑  ↔  ¬  ∀ 𝑦 ¬  𝜑 ) | 
						
							| 28 |  | imbi1 | ⊢ ( ( ∃ 𝑦 𝜑  ↔  ¬  ∀ 𝑦 ¬  𝜑 )  →  ( ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )  ↔  ( ¬  ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 ) ) ) | 
						
							| 29 | 28 | biimprcd | ⊢ ( ( ¬  ∀ 𝑦 ¬  𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )  →  ( ( ∃ 𝑦 𝜑  ↔  ¬  ∀ 𝑦 ¬  𝜑 )  →  ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 ) ) ) | 
						
							| 30 | 26 27 29 | e10 | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )    ) | 
						
							| 31 | 27 | albii | ⊢ ( ∀ 𝑥 ∃ 𝑦 𝜑  ↔  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 ) | 
						
							| 32 |  | imbi2 | ⊢ ( ( ∀ 𝑥 ∃ 𝑦 𝜑  ↔  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )  →  ( ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 )  ↔  ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 ) ) ) | 
						
							| 33 | 32 | biimprcd | ⊢ ( ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )  →  ( ( ∀ 𝑥 ∃ 𝑦 𝜑  ↔  ∀ 𝑥 ¬  ∀ 𝑦 ¬  𝜑 )  →  ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 ) ) ) | 
						
							| 34 | 30 31 33 | e10 | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 )    ) | 
						
							| 35 | 5 34 | gen11nv | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑦 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 )    ) | 
						
							| 36 | 1 35 | gen11nv | ⊢ (    ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )    ▶    ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 )    ) | 
						
							| 37 | 36 | in1 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |