| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfa2 |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) |
| 2 |
|
sp |
⊢ ( ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 3 |
2
|
alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 4 |
|
nf5 |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 5 |
3 4
|
sylibr |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ 𝑥 𝜑 ) |
| 6 |
1 5
|
nfexd |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ 𝑥 ∃ 𝑦 𝜑 ) |
| 7 |
|
nf5 |
⊢ ( Ⅎ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 8 |
6 7
|
sylib |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 9 |
1 8
|
alrimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑦 ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 10 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 11 |
9 10
|
sylib |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |