| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfa2 | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 ) | 
						
							| 2 |  | sp | ⊢ ( ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 3 | 2 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 4 |  | nf5 | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  Ⅎ 𝑥 𝜑 ) | 
						
							| 6 | 1 5 | nfexd | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  Ⅎ 𝑥 ∃ 𝑦 𝜑 ) | 
						
							| 7 |  | nf5 | ⊢ ( Ⅎ 𝑥 ∃ 𝑦 𝜑  ↔  ∀ 𝑥 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 ) ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 ) ) | 
						
							| 9 | 1 8 | alrimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑦 ∀ 𝑥 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 ) ) | 
						
							| 10 |  | alcom | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |