| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 2 |
|
hvmulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
| 4 |
|
hvaddsubass |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) |
| 5 |
3 4
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) |
| 6 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 8 |
7
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) ) |
| 9 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → 𝐴 ∈ ℋ ) |
| 10 |
|
hvaddcl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) |
| 11 |
10
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) |
| 12 |
|
hvsubval |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) |
| 13 |
9 11 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) |
| 14 |
|
hvsubval |
⊢ ( ( ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 15 |
3 14
|
sylan |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 16 |
15
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 17 |
|
ax-hvdistr1 |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 18 |
1 17
|
mp3an1 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 19 |
18
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 20 |
16 19
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) |
| 22 |
13 21
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) |
| 23 |
5 8 22
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |