| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iineq12f.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | iineq12f.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 |  | eleq2 | ⊢ ( 𝐶  =  𝐷  →  ( 𝑦  ∈  𝐶  ↔  𝑦  ∈  𝐷 ) ) | 
						
							| 4 | 3 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  =  𝐷  →  ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐶  ↔  𝑦  ∈  𝐷 ) ) | 
						
							| 5 |  | ralbi | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐶  ↔  𝑦  ∈  𝐷 )  →  ( ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐷 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐶  =  𝐷  →  ( ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐷 ) ) | 
						
							| 7 | 1 2 | raleqf | ⊢ ( 𝐴  =  𝐵  →  ( ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐷  ↔  ∀ 𝑥  ∈  𝐵 𝑦  ∈  𝐷 ) ) | 
						
							| 8 | 6 7 | sylan9bbr | ⊢ ( ( 𝐴  =  𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝐶  =  𝐷 )  →  ( ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐶  ↔  ∀ 𝑥  ∈  𝐵 𝑦  ∈  𝐷 ) ) | 
						
							| 9 | 8 | abbidv | ⊢ ( ( 𝐴  =  𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝐶  =  𝐷 )  →  { 𝑦  ∣  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐶 }  =  { 𝑦  ∣  ∀ 𝑥  ∈  𝐵 𝑦  ∈  𝐷 } ) | 
						
							| 10 |  | df-iin | ⊢ ∩  𝑥  ∈  𝐴 𝐶  =  { 𝑦  ∣  ∀ 𝑥  ∈  𝐴 𝑦  ∈  𝐶 } | 
						
							| 11 |  | df-iin | ⊢ ∩  𝑥  ∈  𝐵 𝐷  =  { 𝑦  ∣  ∀ 𝑥  ∈  𝐵 𝑦  ∈  𝐷 } | 
						
							| 12 | 9 10 11 | 3eqtr4g | ⊢ ( ( 𝐴  =  𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝐶  =  𝐷 )  →  ∩  𝑥  ∈  𝐴 𝐶  =  ∩  𝑥  ∈  𝐵 𝐷 ) |