Metamath Proof Explorer


Theorem iinin2

Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use intiin to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion iinin2 ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 r19.28zv ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) ↔ ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 𝑦𝐶 ) ) )
2 elin ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦𝐶 ) )
3 2 ralbii ( ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
4 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑦𝐶 ) )
5 4 elv ( 𝑦 𝑥𝐴 𝐶 ↔ ∀ 𝑥𝐴 𝑦𝐶 )
6 5 anbi2i ( ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 𝑦𝐶 ) )
7 1 3 6 3bitr4g ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) ) )
8 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ) )
9 8 elv ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
10 elin ( 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵𝑦 𝑥𝐴 𝐶 ) )
11 7 9 10 3bitr4g ( 𝐴 ≠ ∅ → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ) )
12 11 eqrdv ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 ) )