| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iineq1 |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = ∩ 𝑥 ∈ ∅ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
| 2 |
|
0iin |
⊢ ∩ 𝑥 ∈ ∅ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = V |
| 3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = V ) |
| 4 |
3
|
ineq1d |
⊢ ( 𝐴 = ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = ( V ∩ 𝐵 ) ) |
| 5 |
|
incom |
⊢ ( V ∩ 𝐵 ) = ( 𝐵 ∩ V ) |
| 6 |
|
inv1 |
⊢ ( 𝐵 ∩ V ) = 𝐵 |
| 7 |
5 6
|
eqtri |
⊢ ( V ∩ 𝐵 ) = 𝐵 |
| 8 |
4 7
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = 𝐵 ) |
| 9 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) |
| 10 |
|
rabid2 |
⊢ ( 𝐵 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 11 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) |
| 12 |
10 11
|
bitr2i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ 𝐵 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 13 |
9 12
|
sylib |
⊢ ( 𝐴 = ∅ → 𝐵 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 14 |
8 13
|
eqtrd |
⊢ ( 𝐴 = ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 15 |
|
iinrab |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 16 |
15
|
ineq1d |
⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = ( { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ∩ 𝐵 ) ) |
| 17 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ⊆ 𝐵 |
| 18 |
|
dfss |
⊢ ( { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ⊆ 𝐵 ↔ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } = ( { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ∩ 𝐵 ) ) |
| 19 |
17 18
|
mpbi |
⊢ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } = ( { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ∩ 𝐵 ) |
| 20 |
16 19
|
eqtr4di |
⊢ ( 𝐴 ≠ ∅ → ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 21 |
14 20
|
pm2.61ine |
⊢ ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∩ 𝐵 ) = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } |