| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasf1obl.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 2 |
|
imasf1obl.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
imasf1obl.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 4 |
|
imasf1oms.r |
⊢ ( 𝜑 → 𝑅 ∈ MetSp ) |
| 5 |
|
msxms |
⊢ ( 𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ ∞MetSp ) |
| 7 |
1 2 3 6
|
imasf1oxms |
⊢ ( 𝜑 → 𝑈 ∈ ∞MetSp ) |
| 8 |
|
eqid |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
| 9 |
|
eqid |
⊢ ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
| 12 |
10 11
|
msmet |
⊢ ( 𝑅 ∈ MetSp → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 14 |
2
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝑉 × 𝑉 ) = ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
| 15 |
14
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) |
| 16 |
2
|
fveq2d |
⊢ ( 𝜑 → ( Met ‘ 𝑉 ) = ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 17 |
13 15 16
|
3eltr4d |
⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( Met ‘ 𝑉 ) ) |
| 18 |
1 2 3 4 8 9 17
|
imasf1omet |
⊢ ( 𝜑 → ( dist ‘ 𝑈 ) ∈ ( Met ‘ 𝐵 ) ) |
| 19 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 20 |
3 19
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 21 |
1 2 20 4
|
imasbas |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( Met ‘ 𝐵 ) = ( Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 23 |
18 22
|
eleqtrd |
⊢ ( 𝜑 → ( dist ‘ 𝑈 ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 24 |
|
ssid |
⊢ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑈 ) |
| 25 |
|
metres2 |
⊢ ( ( ( dist ‘ 𝑈 ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ∧ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 26 |
23 24 25
|
sylancl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 27 |
|
eqid |
⊢ ( TopOpen ‘ 𝑈 ) = ( TopOpen ‘ 𝑈 ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 29 |
|
eqid |
⊢ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) = ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) |
| 30 |
27 28 29
|
isms |
⊢ ( 𝑈 ∈ MetSp ↔ ( 𝑈 ∈ ∞MetSp ∧ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ) ) |
| 31 |
7 26 30
|
sylanbrc |
⊢ ( 𝜑 → 𝑈 ∈ MetSp ) |