| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infpwfien |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) |
| 2 |
|
relen |
⊢ Rel ≈ |
| 3 |
2
|
brrelex1i |
⊢ ( ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 4 |
1 3
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
| 5 |
|
difss |
⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ⊆ ( 𝒫 𝐴 ∩ Fin ) |
| 6 |
|
ssdomg |
⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ⊆ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ) ) |
| 7 |
4 5 6
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
| 8 |
|
domentr |
⊢ ( ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) |
| 9 |
7 1 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) |
| 10 |
|
numdom |
⊢ ( ( 𝐴 ∈ dom card ∧ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card ) |
| 11 |
9 10
|
syldan |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card ) |
| 12 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) = ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) |
| 13 |
12
|
fifo |
⊢ ( 𝐴 ∈ dom card → ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
| 15 |
|
fodomnum |
⊢ ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card → ( ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 16 |
11 14 15
|
sylc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) |
| 17 |
|
domtr |
⊢ ( ( ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∧ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ 𝐴 ) |
| 18 |
16 9 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ 𝐴 ) |
| 19 |
|
fvex |
⊢ ( fi ‘ 𝐴 ) ∈ V |
| 20 |
|
ssfii |
⊢ ( 𝐴 ∈ dom card → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
| 22 |
|
ssdomg |
⊢ ( ( fi ‘ 𝐴 ) ∈ V → ( 𝐴 ⊆ ( fi ‘ 𝐴 ) → 𝐴 ≼ ( fi ‘ 𝐴 ) ) ) |
| 23 |
19 21 22
|
mpsyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ≼ ( fi ‘ 𝐴 ) ) |
| 24 |
|
sbth |
⊢ ( ( ( fi ‘ 𝐴 ) ≼ 𝐴 ∧ 𝐴 ≼ ( fi ‘ 𝐴 ) ) → ( fi ‘ 𝐴 ) ≈ 𝐴 ) |
| 25 |
18 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≈ 𝐴 ) |