Metamath Proof Explorer


Theorem inffien

Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion inffien AdomcardωAfiAA

Proof

Step Hyp Ref Expression
1 infpwfien AdomcardωA𝒫AFinA
2 relen Rel
3 2 brrelex1i 𝒫AFinA𝒫AFinV
4 1 3 syl AdomcardωA𝒫AFinV
5 difss 𝒫AFin𝒫AFin
6 ssdomg 𝒫AFinV𝒫AFin𝒫AFin𝒫AFin𝒫AFin
7 4 5 6 mpisyl AdomcardωA𝒫AFin𝒫AFin
8 domentr 𝒫AFin𝒫AFin𝒫AFinA𝒫AFinA
9 7 1 8 syl2anc AdomcardωA𝒫AFinA
10 numdom Adomcard𝒫AFinA𝒫AFindomcard
11 9 10 syldan AdomcardωA𝒫AFindomcard
12 eqid x𝒫AFinx=x𝒫AFinx
13 12 fifo Adomcardx𝒫AFinx:𝒫AFinontofiA
14 13 adantr AdomcardωAx𝒫AFinx:𝒫AFinontofiA
15 fodomnum 𝒫AFindomcardx𝒫AFinx:𝒫AFinontofiAfiA𝒫AFin
16 11 14 15 sylc AdomcardωAfiA𝒫AFin
17 domtr fiA𝒫AFin𝒫AFinAfiAA
18 16 9 17 syl2anc AdomcardωAfiAA
19 fvex fiAV
20 ssfii AdomcardAfiA
21 20 adantr AdomcardωAAfiA
22 ssdomg fiAVAfiAAfiA
23 19 21 22 mpsyl AdomcardωAAfiA
24 sbth fiAAAfiAfiAA
25 18 23 24 syl2anc AdomcardωAfiAA