Metamath Proof Explorer


Theorem iooii

Description: Open intervals are open sets of II . (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Assertion iooii ( ( 0 ≤ 𝐴𝐵 ≤ 1 ) → ( 𝐴 (,) 𝐵 ) ∈ II )

Proof

Step Hyp Ref Expression
1 0xr 0 ∈ ℝ*
2 1xr 1 ∈ ℝ*
3 ioossioo ( ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( 0 ≤ 𝐴𝐵 ≤ 1 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) )
4 1 2 3 mpanl12 ( ( 0 ≤ 𝐴𝐵 ≤ 1 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) )
5 iooretop ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) )
6 iooretop ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) )
7 ioossicc ( 0 (,) 1 ) ⊆ ( 0 [,] 1 )
8 retop ( topGen ‘ ran (,) ) ∈ Top
9 ovex ( 0 [,] 1 ) ∈ V
10 restopnb ( ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 0 [,] 1 ) ∈ V ) ∧ ( ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) )
11 8 9 10 mpanl12 ( ( ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) )
12 6 7 11 mp3an12 ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) )
13 5 12 mpbii ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) )
14 dfii2 II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) )
15 13 14 eleqtrrdi ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( 𝐴 (,) 𝐵 ) ∈ II )
16 4 15 syl ( ( 0 ≤ 𝐴𝐵 ≤ 1 ) → ( 𝐴 (,) 𝐵 ) ∈ II )