| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 2 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 3 |
|
ioossioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 1 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) |
| 4 |
1 2 3
|
mpanl12 |
⊢ ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 1 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) |
| 5 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
| 6 |
|
iooretop |
⊢ ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) |
| 7 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
| 8 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 9 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
| 10 |
|
restopnb |
⊢ ( ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 0 [,] 1 ) ∈ V ) ∧ ( ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) ) |
| 11 |
8 9 10
|
mpanl12 |
⊢ ( ( ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) ) |
| 12 |
6 7 11
|
mp3an12 |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) ) |
| 13 |
5 12
|
mpbii |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
| 14 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
| 15 |
13 14
|
eleqtrrdi |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( 𝐴 (,) 𝐵 ) ∈ II ) |
| 16 |
4 15
|
syl |
⊢ ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 1 ) → ( 𝐴 (,) 𝐵 ) ∈ II ) |