Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
1xr |
⊢ 1 ∈ ℝ* |
3 |
|
ioossioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 1 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) |
4 |
1 2 3
|
mpanl12 |
⊢ ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 1 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) |
5 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
6 |
|
iooretop |
⊢ ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) |
7 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
8 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
9 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
10 |
|
restopnb |
⊢ ( ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 0 [,] 1 ) ∈ V ) ∧ ( ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) ) |
11 |
8 9 10
|
mpanl12 |
⊢ ( ( ( 0 (,) 1 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) ) |
12 |
6 7 11
|
mp3an12 |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) ) |
13 |
5 12
|
mpbii |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( 𝐴 (,) 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
14 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
15 |
13 14
|
eleqtrrdi |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 0 (,) 1 ) → ( 𝐴 (,) 𝐵 ) ∈ II ) |
16 |
4 15
|
syl |
⊢ ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 1 ) → ( 𝐴 (,) 𝐵 ) ∈ II ) |