Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Topology
Topological definitions using the reals
iooii
Next ⟩
icccldii
Metamath Proof Explorer
Ascii
Unicode
Theorem
iooii
Description:
Open intervals are open sets of
II
.
(Contributed by
Zhi Wang
, 9-Sep-2024)
Ref
Expression
Assertion
iooii
⊢
0
≤
A
∧
B
≤
1
→
A
B
∈
II
Proof
Step
Hyp
Ref
Expression
1
0xr
⊢
0
∈
ℝ
*
2
1xr
⊢
1
∈
ℝ
*
3
ioossioo
⊢
0
∈
ℝ
*
∧
1
∈
ℝ
*
∧
0
≤
A
∧
B
≤
1
→
A
B
⊆
0
1
4
1
2
3
mpanl12
⊢
0
≤
A
∧
B
≤
1
→
A
B
⊆
0
1
5
iooretop
⊢
A
B
∈
topGen
⁡
ran
⁡
.
6
iooretop
⊢
0
1
∈
topGen
⁡
ran
⁡
.
7
ioossicc
⊢
0
1
⊆
0
1
8
retop
⊢
topGen
⁡
ran
⁡
.
∈
Top
9
ovex
⊢
0
1
∈
V
10
restopnb
⊢
topGen
⁡
ran
⁡
.
∈
Top
∧
0
1
∈
V
∧
0
1
∈
topGen
⁡
ran
⁡
.
∧
0
1
⊆
0
1
∧
A
B
⊆
0
1
→
A
B
∈
topGen
⁡
ran
⁡
.
↔
A
B
∈
topGen
⁡
ran
⁡
.
↾
𝑡
0
1
11
8
9
10
mpanl12
⊢
0
1
∈
topGen
⁡
ran
⁡
.
∧
0
1
⊆
0
1
∧
A
B
⊆
0
1
→
A
B
∈
topGen
⁡
ran
⁡
.
↔
A
B
∈
topGen
⁡
ran
⁡
.
↾
𝑡
0
1
12
6
7
11
mp3an12
⊢
A
B
⊆
0
1
→
A
B
∈
topGen
⁡
ran
⁡
.
↔
A
B
∈
topGen
⁡
ran
⁡
.
↾
𝑡
0
1
13
5
12
mpbii
⊢
A
B
⊆
0
1
→
A
B
∈
topGen
⁡
ran
⁡
.
↾
𝑡
0
1
14
dfii2
⊢
II
=
topGen
⁡
ran
⁡
.
↾
𝑡
0
1
15
13
14
eleqtrrdi
⊢
A
B
⊆
0
1
→
A
B
∈
II
16
4
15
syl
⊢
0
≤
A
∧
B
≤
1
→
A
B
∈
II