| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|- 0 e. RR* |
| 2 |
|
1xr |
|- 1 e. RR* |
| 3 |
|
ioossioo |
|- ( ( ( 0 e. RR* /\ 1 e. RR* ) /\ ( 0 <_ A /\ B <_ 1 ) ) -> ( A (,) B ) C_ ( 0 (,) 1 ) ) |
| 4 |
1 2 3
|
mpanl12 |
|- ( ( 0 <_ A /\ B <_ 1 ) -> ( A (,) B ) C_ ( 0 (,) 1 ) ) |
| 5 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 6 |
|
iooretop |
|- ( 0 (,) 1 ) e. ( topGen ` ran (,) ) |
| 7 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 8 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 9 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
| 10 |
|
restopnb |
|- ( ( ( ( topGen ` ran (,) ) e. Top /\ ( 0 [,] 1 ) e. _V ) /\ ( ( 0 (,) 1 ) e. ( topGen ` ran (,) ) /\ ( 0 (,) 1 ) C_ ( 0 [,] 1 ) /\ ( A (,) B ) C_ ( 0 (,) 1 ) ) ) -> ( ( A (,) B ) e. ( topGen ` ran (,) ) <-> ( A (,) B ) e. ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) ) |
| 11 |
8 9 10
|
mpanl12 |
|- ( ( ( 0 (,) 1 ) e. ( topGen ` ran (,) ) /\ ( 0 (,) 1 ) C_ ( 0 [,] 1 ) /\ ( A (,) B ) C_ ( 0 (,) 1 ) ) -> ( ( A (,) B ) e. ( topGen ` ran (,) ) <-> ( A (,) B ) e. ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) ) |
| 12 |
6 7 11
|
mp3an12 |
|- ( ( A (,) B ) C_ ( 0 (,) 1 ) -> ( ( A (,) B ) e. ( topGen ` ran (,) ) <-> ( A (,) B ) e. ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) ) |
| 13 |
5 12
|
mpbii |
|- ( ( A (,) B ) C_ ( 0 (,) 1 ) -> ( A (,) B ) e. ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
| 14 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
| 15 |
13 14
|
eleqtrrdi |
|- ( ( A (,) B ) C_ ( 0 (,) 1 ) -> ( A (,) B ) e. II ) |
| 16 |
4 15
|
syl |
|- ( ( 0 <_ A /\ B <_ 1 ) -> ( A (,) B ) e. II ) |