Metamath Proof Explorer


Theorem iotaeq

Description: Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 30-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion iotaeq ( ∀ 𝑥 𝑥 = 𝑦 → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 drsb1 ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜑 ) )
2 df-clab ( 𝑧 ∈ { 𝑥𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 )
3 df-clab ( 𝑧 ∈ { 𝑦𝜑 } ↔ [ 𝑧 / 𝑦 ] 𝜑 )
4 1 2 3 3bitr4g ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 ∈ { 𝑥𝜑 } ↔ 𝑧 ∈ { 𝑦𝜑 } ) )
5 4 eqrdv ( ∀ 𝑥 𝑥 = 𝑦 → { 𝑥𝜑 } = { 𝑦𝜑 } )
6 5 eqeq1d ( ∀ 𝑥 𝑥 = 𝑦 → ( { 𝑥𝜑 } = { 𝑧 } ↔ { 𝑦𝜑 } = { 𝑧 } ) )
7 6 abbidv ( ∀ 𝑥 𝑥 = 𝑦 → { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } } = { 𝑧 ∣ { 𝑦𝜑 } = { 𝑧 } } )
8 7 unieqd ( ∀ 𝑥 𝑥 = 𝑦 { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } } = { 𝑧 ∣ { 𝑦𝜑 } = { 𝑧 } } )
9 df-iota ( ℩ 𝑥 𝜑 ) = { 𝑧 ∣ { 𝑥𝜑 } = { 𝑧 } }
10 df-iota ( ℩ 𝑦 𝜑 ) = { 𝑧 ∣ { 𝑦𝜑 } = { 𝑧 } }
11 8 9 10 3eqtr4g ( ∀ 𝑥 𝑥 = 𝑦 → ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜑 ) )