| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip1i.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
ip1i.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
| 3 |
|
ip1i.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
| 4 |
|
ip1i.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
| 5 |
|
ip1i.9 |
⊢ 𝑈 ∈ CPreHilOLD |
| 6 |
|
ipasslem7.a |
⊢ 𝐴 ∈ 𝑋 |
| 7 |
|
ipasslem7.b |
⊢ 𝐵 ∈ 𝑋 |
| 8 |
|
ipasslem7.f |
⊢ 𝐹 = ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 9 |
|
ipasslem7.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 10 |
|
ipasslem7.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 11 |
10
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) |
| 12 |
9 11
|
eqtri |
⊢ 𝐽 = ( 𝐾 ↾t ℝ ) |
| 13 |
10
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 14 |
13
|
a1i |
⊢ ( ⊤ → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 15 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 16 |
15
|
a1i |
⊢ ( ⊤ → ℝ ⊆ ℂ ) |
| 17 |
14
|
cnmptid |
⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ 𝑤 ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 18 |
5
|
phnvi |
⊢ 𝑈 ∈ NrmCVec |
| 19 |
|
eqid |
⊢ ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 𝑈 ) |
| 20 |
1 19
|
imsxmet |
⊢ ( 𝑈 ∈ NrmCVec → ( IndMet ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 21 |
18 20
|
ax-mp |
⊢ ( IndMet ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝑋 ) |
| 22 |
|
eqid |
⊢ ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) = ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) |
| 23 |
22
|
mopntopon |
⊢ ( ( IndMet ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝑋 ) → ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 24 |
21 23
|
mp1i |
⊢ ( ⊤ → ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 25 |
6
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ 𝑋 ) |
| 26 |
14 24 25
|
cnmptc |
⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ 𝐴 ) ∈ ( 𝐾 Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 27 |
19 22 3 10
|
smcn |
⊢ ( 𝑈 ∈ NrmCVec → 𝑆 ∈ ( ( 𝐾 ×t ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 28 |
18 27
|
mp1i |
⊢ ( ⊤ → 𝑆 ∈ ( ( 𝐾 ×t ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 29 |
14 17 26 28
|
cnmpt12f |
⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( 𝑤 𝑆 𝐴 ) ) ∈ ( 𝐾 Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 30 |
7
|
a1i |
⊢ ( ⊤ → 𝐵 ∈ 𝑋 ) |
| 31 |
14 24 30
|
cnmptc |
⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ 𝐵 ) ∈ ( 𝐾 Cn ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) ) |
| 32 |
4 19 22 10
|
dipcn |
⊢ ( 𝑈 ∈ NrmCVec → 𝑃 ∈ ( ( ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ×t ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) Cn 𝐾 ) ) |
| 33 |
18 32
|
mp1i |
⊢ ( ⊤ → 𝑃 ∈ ( ( ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ×t ( MetOpen ‘ ( IndMet ‘ 𝑈 ) ) ) Cn 𝐾 ) ) |
| 34 |
14 29 31 33
|
cnmpt12f |
⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 35 |
1 4
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 36 |
18 6 7 35
|
mp3an |
⊢ ( 𝐴 𝑃 𝐵 ) ∈ ℂ |
| 37 |
36
|
a1i |
⊢ ( ⊤ → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 38 |
14 14 37
|
cnmptc |
⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( 𝐴 𝑃 𝐵 ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 39 |
10
|
mulcn |
⊢ · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 40 |
39
|
a1i |
⊢ ( ⊤ → · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 41 |
14 17 38 40
|
cnmpt12f |
⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 42 |
10
|
subcn |
⊢ − ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 43 |
42
|
a1i |
⊢ ( ⊤ → − ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 44 |
14 34 41 43
|
cnmpt12f |
⊢ ( ⊤ → ( 𝑤 ∈ ℂ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ∈ ( 𝐾 Cn 𝐾 ) ) |
| 45 |
12 14 16 44
|
cnmpt1res |
⊢ ( ⊤ → ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 46 |
45
|
mptru |
⊢ ( 𝑤 ∈ ℝ ↦ ( ( ( 𝑤 𝑆 𝐴 ) 𝑃 𝐵 ) − ( 𝑤 · ( 𝐴 𝑃 𝐵 ) ) ) ) ∈ ( 𝐽 Cn 𝐾 ) |
| 47 |
8 46
|
eqeltri |
⊢ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) |