Metamath Proof Explorer


Theorem ipasslem7

Description: Lemma for ipassi . Show that ( ( w S A ) P B ) - ( w x. ( A P B ) ) is continuous on RR . (Contributed by NM, 23-Aug-2007) (Revised by Mario Carneiro, 6-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ipasslem7.a A X
ipasslem7.b B X
ipasslem7.f F = w w S A P B w A P B
ipasslem7.j J = topGen ran .
ipasslem7.k K = TopOpen fld
Assertion ipasslem7 F J Cn K

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ipasslem7.a A X
7 ipasslem7.b B X
8 ipasslem7.f F = w w S A P B w A P B
9 ipasslem7.j J = topGen ran .
10 ipasslem7.k K = TopOpen fld
11 10 tgioo2 topGen ran . = K 𝑡
12 9 11 eqtri J = K 𝑡
13 10 cnfldtopon K TopOn
14 13 a1i K TopOn
15 ax-resscn
16 15 a1i
17 14 cnmptid w w K Cn K
18 5 phnvi U NrmCVec
19 eqid IndMet U = IndMet U
20 1 19 imsxmet U NrmCVec IndMet U ∞Met X
21 18 20 ax-mp IndMet U ∞Met X
22 eqid MetOpen IndMet U = MetOpen IndMet U
23 22 mopntopon IndMet U ∞Met X MetOpen IndMet U TopOn X
24 21 23 mp1i MetOpen IndMet U TopOn X
25 6 a1i A X
26 14 24 25 cnmptc w A K Cn MetOpen IndMet U
27 19 22 3 10 smcn U NrmCVec S K × t MetOpen IndMet U Cn MetOpen IndMet U
28 18 27 mp1i S K × t MetOpen IndMet U Cn MetOpen IndMet U
29 14 17 26 28 cnmpt12f w w S A K Cn MetOpen IndMet U
30 7 a1i B X
31 14 24 30 cnmptc w B K Cn MetOpen IndMet U
32 4 19 22 10 dipcn U NrmCVec P MetOpen IndMet U × t MetOpen IndMet U Cn K
33 18 32 mp1i P MetOpen IndMet U × t MetOpen IndMet U Cn K
34 14 29 31 33 cnmpt12f w w S A P B K Cn K
35 1 4 dipcl U NrmCVec A X B X A P B
36 18 6 7 35 mp3an A P B
37 36 a1i A P B
38 14 14 37 cnmptc w A P B K Cn K
39 10 mulcn × K × t K Cn K
40 39 a1i × K × t K Cn K
41 14 17 38 40 cnmpt12f w w A P B K Cn K
42 10 subcn K × t K Cn K
43 42 a1i K × t K Cn K
44 14 34 41 43 cnmpt12f w w S A P B w A P B K Cn K
45 12 14 16 44 cnmpt1res w w S A P B w A P B J Cn K
46 45 mptru w w S A P B w A P B J Cn K
47 8 46 eqeltri F J Cn K